Dimensional Shrinkage

In addition to being hygroscopic (gaining or losing moisture from the surrounding air), wood is also anisotropic. What this means is that wood has different properties depending on the direction or orientation of the grain—it’s not the same in all directions—and one of the areas where this property is most clearly seen is in dimensional shrinkage.

As opposed to a simple sponge or other isotropic material, wood (anisotropic) does not shrink in a perfectly uniform manner, and understanding this will help to avoid some pitfalls in preventing many shrinkage-related defects which may not crop up until months (or even years) after the wood product is finished.

A basic measurement of shrinkage—expressed as a percentage—is the amount that the wood shrinks when going from its green to ovendry state. In other words, since wood in its green state is at its largest dimension, and ovendry represents its driest (and therefore smallest) volume, green to ovendry is a measurement of the maximum possible percentage of shrinkage; this is referred to as the wood’s volumetric shrinkage.

Volumetric shrinkage tells how much a wood species will shrink, but it doesn’t indicate the direction of the shrinkage. The two primary planes or surfaces of wood where shrinkage takes place are across the radial plane, and across the tangential plane, corresponding to radial shrinkage, and tangential shrinkage; these two values, when combined, should roughly add up to the volumetric shrinkage.

Radial, Tangential, and Volumetric Shrinkage

The amount a piece of wood will shrink lengthwise, called longitudinal shrinkage, is so small—typically about 0.1% to 0.2%—that it is usually inconsequential to the volumetric shrinkage. However, plywood greatly benefits from the low longitudinal shrinkage of wood—layers of wood veneer are glued together with the grain direction of each ply oriented perpendicular to the adjacent ply, which has the effect of restraining most radial or tangential shrinkage within the veneer plies. As a result, the rates of shrinkage for the width and length of a plywood panel are typically less than 1%, (though changes in thickness still remain about the same as solid wood).

Radial shrinkage in solid wood can vary from less than 2% for some of the stablest wood species, upwards to around 8% for the least stable species; most woods fall in the range of about 3% to 5% radial shrinkage. Tangential shrinkage can vary from about 3% up to around 12%; most woods fall in the range of about 6% to 10% tangential shrinkage. (Accordingly, volumetric shrinkage is typically within the range of 9% to 15% for most wood species.)

The relationship between these two shrinkage values is expressed as the tangential to radial shrinkage ratio, or simply the T/R ratio. In addition to the volumetric shrinkage, (which measures the magnitude of the shrinkage), the T/R ratio serves to measure the uniformity of the shrinkage, and is another good indicator of a wood’s stability. Ideally, a wood species with good stability would have both low volumetric shrinkage and a low T/R ratio.

Radial, Tangential, and Volumetric Shrinkage
A hypothetical shrinkage curve: Although shrinkage rates can vary considerably between species, (and even within the same species), this graph helps illustrate the shrinkage rates and their average proportions to one another; data was charted from values for Hard Maple (Acer saccharum), which has a T/R ratio of 2.1. Volumetric shrinkage (not pictured) is usually close to the sum of the three shrinkage percentages shown above. Tangential shrinkage accounts for the lion’s share of the overall shrinkage—about two thirds—with radial shrinkage making up most of the remaining third, and longitudinal shrinkage accounting for virtually nil.


(It should be noted that just because a particular wood species experiences a high initial shrinkage during drying, doesn’t always correlate to an equal swelling after it has been dried. For instance, Basswood has fairly high initial shrinkage percentages—6.6% radial, 9.3% tangential, and 15.8% volumetric—yet its movement in service is relatively low. Using shrinkage and T/R ratio data simply offers woodworkers the best means of making an educated guess.)

In various wood species, the T/R ratio can range from just over 1, to nearly 3. At a T/R ratio of 1, shrinkage would occur in a perfectly uniform manner across the width and thickness of the board. At a T/R ratio of 3, the flatsawn surface would shrink or swell at triple the rate of the quartersawn surface.

As a general rule of thumb for most species, the tangential shrinkage is roughly double that of the radial shrinkage, which translates to an average T/R ratio of about 2. This helps explain why quartersawn boards are considered more stable than flatsawn boards: with quartersawn lumber, the thickness of the board is doing the majority of the shrinking or swelling, with the face of the board exhibiting minimal change in width—a useful characteristic for applications such as flooring planks or workbench tops.

Related Articles:

Get the hard copy

wood-book-standupIf you’re interested in getting all that makes The Wood Database unique distilled into a single, real-world resource, there’s the book that’s based on the website—the Amazon.com best-seller, WOOD! Identifying and Using Hundreds of Woods Worldwide. It contains many of the most popular articles found on this website, as well as hundreds of wood profiles—laid out with the same clarity and convenience of the website—packaged in a shop-friendly hardcover book.

Notify of
Inline Feedbacks
View all comments
Caleb Sturges

Is there a way to use the radial and tangential shrinkage to estimate how much a log for a log Lodge will shrink? The naive approach of just using radial shrinkage for total vertical shrinkage yields a result that is far too low – 4% in total for red oak on the attached image. Where I know there is no way that the total shrinkage which will take decades for this 2+ foot average oak is going to be 4% in diameter. I stripped the bark and sapwood last November and it has already lost about 1% diameter, and that… Read more »


If you’re using whole logs could you just use the figure for volumetric shrinkage and calculate the new log diameter with algebra and pi? It depends on what the joint is like I guess.


Thinking about it a bit more, using the value for volumetric shrinkage won’t be quite right since that would include the axial shrinkage, which should be excluded when calculating the shrinkage of the cross section of the log. However, as the article explains, axial shrinkage only constitutes 1 or 2 tenths of a percent of the total volumetric shrinkage and so could safely be ignored, although it would be easy enough to include in the calculation.


Hi, am I correct to assume that the wood species with the lowest shrinkage in every category is Hevea / Rubberwood?


Hi Eric, I recently had a pine farmhouse table custom made. They created an oak look stain but left it untreated. Now there are some significant shrinkage issues particularly on one plank. It’s winter so I have recently put the log burner on. Is it my fault or should I speak with the company who made the table or is this normal? Will the wood expand again in the future? They quote on their website that they use kiln dried wood 10-14% and to leave the table to acclimate before putting the heating on. How long is a reasonable amount… Read more »


Hi Derek,

Many thanks for your reply.

I don’t have a way to measure humidity right now but I will certainly source something soon and I do have a humidifier running now also.

The look of the cracks themselves don’t bother me a great deal as I do like a rustic look. But I’m worried about the structural integrity of the wood? Is it possible it would crack all the way through?

Thank you.


If the first shrinkage value is 25%, then it swells back to its original dimensions; what would the shrinkage value you obtain for 2nd time shrinkage be?Increase or decrease? Why? 

David Munroe

I’m looking for something on the site to tell me how to use the shrinkage percentages to calculate what they are on a per inch basis. I’m building a cabinet made of 4/4 by 14 inch thick Lati boards, where the end grain is slanted at about 30 to 40 degrees to the face, which have no flat grain. Would I use the tangential or radial percentage for the width, or split the difference? Do I just multiply the percentage times the width, i.e using 10.6% tangential shrinkage figure means .106 x 14 inches = about 1 1/2 inches movement?… Read more »

elizabeht nicklaus

a bought a signa wood table last month. no the wood strips have come apart, and the manufacturer said this has happened because the wood shrunk do to not being treated? ca it shrink so quickly from not being treated for 5 weeks?

Aidan English

Fully drying takes a long time, but yes wood that isn’t sealed can shrink enough to crack in a few days if the change in humidity is enough. Green wood can develop cracks in a few minutes if it’s wet enough.

Mike Carbonaro

Hi Eric, I’m making a table using a rosewood slab 2” thick and about 14” wide. Do I need to worry about tangential expansion/shrinking? I’m considering framing it with 1 1/2” mitered corners using hard maple.
Thanks in advance,

Tim Falla

Hi Eric, I’m having a hornbeam felled and cut into rounds which I then need to season.  Each round will eventually be milled on my CNC router down to 0.918”. I will use the rounds to make wood type, the letters being cut into the end grain.  My question is, how thick should I have the rounds cut after the tree is felled? I don’t imagine there’ll be much longitudinal shrinkage as that dimension will a little over an inch. Are the rounds likely to warp do you know?  Finally, how long should I season the rounds for? Given that… Read more »

Tim Falla

Thanks very much, Eric.

Donnie Ferris

Hi, Eric! I hope you still read/reply to comments on old posts. I have a special request… would you please help me out with a recommendation for a rather unique project? I’d like to try making some reference quality metric setup blocks out of wood (they’re normally made from brass https://bit.ly/3gxlTov for stability). I haven’t been able to find a source for metric setup blocks. I’m sure I could have some machined but I’m an avid DEYer (Do Everything Yourself) and besides, this would be a labor of love. Anyway, to do this, I’ll have to cut the blocks a… Read more »

Last edited 2 years ago by Donnie Ferris
Donnie Ferris

The height and width would be 25mm. (And another one that’s 2mm, 3mm, 4mm, 6mm, 12mm, etc.)
Thanks for the recommendations!

Last edited 2 years ago by Donnie Ferris

Looking for information on how much douglas fir heartwood shrinks, for the purpose of a log cabin build where I cut most of the sapwood off the log. I want to know if I need to dry the logs or if I can stack them right away with zero gap.

Vibeke Dunleath

Can I ask, please. Would green oak be suitable for a plank table in a conservatory. Obviously it’s quite a damp atmosphere especially in the winter months, but it’s hot and damp in the summer months. A suitable oak fell in the last storm and I wondered if it could replace the veneered planks on the two tables I have in my conservatory. Grateful for some advice!

Vibeke Dunleath

Thank you so much Eric. I’ve done a little more digging and one of the reasons I asked is that if you could use it green I’d get it much sooner! Yes, boredom during Covid is a problem here! The lengths will be 2 meters, with 30cm and depth is 3 cm. I do have a local timber merchant who can kiln dry it for me. The other reason is that we have offered 2 oaks for the rebuilding of Notre Dame in the name of our 4 French grandchildren and that apparently has to be green although it’s not… Read more »

Den Socling

I felt like a bum for using this site so often so I bought the book. It’s great but when I Google a question about wood, I’m often brought here again.

Jay H

If I’m working with 2 x 8 pressure treated lumber measuring 7 1/2″ and the wood has a moisture content of 20% what can I expect the lumber to measure after it has dried out? Thank you!

Jay H

I made a mistake. The moisture ranges anywhere from 30 to 50% on these new boards with an average rating of near 35%. I was told that they were kiln dried before treatment.
I’m expecting the lumber to dry to somewhere near 9%. Thank you.

Gregory Holmberg

I want to build a guitar neck from a quarter-sawn piece of lumber. For shrinkage of the finished neck due to changing humidity, I primarily care about the change in the length of neck, since that is what affects the pitch of the strings.

Is there any source of data for longitudinal shrinkage of various species?


The shrinkage in length is inconsequential with respect to fingerboard length. The 0.1% quoted above is for volumetric shrinkage from green. The wood you’ll be using for an instrument should be dried to about 6 or 7% moisture content. The seasonal dimensional changes in length of dry wood will be only a very tiny fraction of the 0.1% stated in the article.


Should longitudinal shrinkage be accounted for in furniture making? Example?


Hi, I’m Interested in wood with similar shrinking properties, specifically, mahogany and anything else that is way less expensive that I can use in conjunctiin with mahogany. I have a huge project going on and Id like to mate different species in various capacities where the magogany will be showing and the cheaper would would never be visible. This would enabke me to use much less mahogany than if I used solid pieces and I could not only cut the cost way down, but would also have an easier time sourcing material if using less actual mahogany. This all depends… Read more »


“volumetric shrinkage is essentially equal to the sum of the three shrinkage percentages shown above” — would it not be the product? v = wxbxh?


Yes, but since the percents are all very close to one, adding them is a close approximation. So take a board with shrikages of 8%, 4%, and 1%. The volume will be .92 * .96 * .99 = .874368, or 12.5632% overall shrinkage. That’s very close to the 13% you’d get from summing the percents.

In practice, the error you get from this approximation will be swamped by the variation between different pieces of wood. So it’s a safe “close enough” rule to use.

Gregory Holmberg

This site gives radial Rs, tangential Ts, and volumetric Vs shrinkage. To calculate length shrinkage from green to dry:

Ls = 1 – (1-Vs) / ((1-Rs) * (1-Ts))

where, for example, 8.2% would be entered as 0.082.

For example, for Western White Pine, volume shrink is 11.8%, radial shrink is 4.1%, and tangential shrink is 7.4%. So longitudinal shrink is:

Ls = 1 – (1-0.118) / ((1-0.041) * (1-0.074)) = 0.0068, or 0.68%.

There are some cases where Ls comes out negative. This is not possible, so take the numbers as approximations.

Y. Luo

Many thanks for sharing the shortcuts. I have been wondering about the best way to attach a solid wood table top to its support rails to allow for its shrinkage/swells and the first paper has given me a few suggestions. Good papers to read for anyone who is interested in wood or woodworking.


I have a simple question, I have made some white pine table tops that in the middle of winter split up the middle , ussaly when the table had opposite direction grain end boards at each end . I am assuming this was a result of my lack of ensuring the wood was 6-8% mc. I think if I keep the wood low in numbers like 6% or even 5.5 % mc and seal it with extra lacquer that it will handle the dry winter inside a home ? Or should I not use end boards , or switch to… Read more »


Will freshly milled dimensional eastern red cedar shrink and expand greatly in the first couple of months it is laid down. Having a slow start and wondering about tight fitting on later boards.


I’m wondering how a wood species’ T/R ratio relates, if at all, to its tendency to check, especially in large boxed heart beams. Here are my hypotheses. I noticed that eastern white pine, even though it has very low shrinkage numbers, has a very high T/R ratio, and I’ve read elsewhere that it checks more than other species, so that makes me think higher T/R ratios would be associated with more checking. With a boxed heart beam it would seem like checking would normally be the result of wood shrinking faster tangentially than it shrinks radially, but since the circumference… Read more »

Efram Golddberg

I can offer some insight from a scientific perspective. In order to help understand, lets consider what causes checks. Checking occurs when the forces acting upon the wood exceed the tensile strength causing the wood fibers to pull apart and resulting in cracks. Also notice that these happen running parallel with the grain, which suggests that the forces are acting perpendicular to the grain. As to your first question, the higher the T/R ratio the more the relative amount of tangential shrinkage occurs. Both these shrinkages happen at right angles to the grain. As the T/R ratio gets closer to… Read more »

Bill T.


Mn7#GoFuCarthago Kid

We have problems of swelling in Oak Glulam furniture doors made by Venjakob, the door is only 688mm high and has swelled by 8mm, the relative humidity range of the room is between 45-55% and the temperature range is between 18 – 22 deg. The glue laminated timber runs horizontally and the door thickness is 20mm. Can you please advise what your assessment of the problem is.


what was the moisute content of the wood during production of the furniture? It should be between 6-8% otherwise it may cause problems as described

Walt Corey

We had hardwoods installed throughout (except bath and kitchen). In the hall the wood is laid perpendicular to the hall and terminates in the foyer. This is where the directionality changes as the foyer is laid parallel to the hall so the wood meets sort of T shaped.Very easily a quarter could be dropped in the winter gap. I’d guess it is easily 1/8″. However, at the other side of the foyer is the dining room and the direction of the planks is identical to the foyer. At the end of the dining room is the kitchen. The gap at… Read more »


you need to find a way to control the humidity in your house. the change in gaps between boards are from a change in the humidity.


Im getting ready to cut down a large pecan and cedar tree. I plan to slab both for table top projects. If I want a finished 3″ thickness, how thick do I have to cut it green? Does the book cover this type of info?


Wood this be mostly for quartersawn lumber? Or do plainsawn and rift sawn shrink in the same manner?