WOOD!
IDENTIFYING AND USING HUNDREDS OF WOODS WORLDWIDE
ERIC MEIER
Table of Contents

1. **ONE | Foundations: What is Wood?**
 - Hardwoods and Softwoods
 - Tree Growth
 - Sapwood and Heartwood
 - Planes or Surfaces of Wood
 - Grain Appearance
 - Rays

2. **TWO | Building on Basics: Wood and Moisture**
 - Dimensional Shrinkage
 - Wood Finishes and Moisture
 - Finishing Oily or Resinous Woods

3. **THREE | A Closer Look: Identifying Wood**
 - Great Expectations
 - Fill in the Blank, or Multiple Choice?
 - Deductive Wood Identification

4. **FOUR | Under the Lens: Softwood Anatomy**
 - Resin Canals
 - Tracheids
 - Earlywood to Latewood Transition
 - Grain Contrast
 - Parenchyma
 - Rays

5. **FIVE | Under the Lens: Hardwood Anatomy**
 - Vessel Elements
 - Parenchyma
 - Rays
 - Wood Fibers
 - Monocots: A Special Case

6. **SIX | A Kaleidoscope: The Wood Profiles**
 - Profile Fields Explained
 - Wood Profiles

7. **Appendices and Back Matter**
 - Appendix A: Janka Hardness Masterlist
 - Appendix B: Modulus of Rupture Masterlist
 - Appendix C: Modulus of Elasticity Masterlist
 - Bibliography
 - Acknowledgments
 - Index
A Brief Introduction: From the Author

When it comes to those who work with wood, there seems to be generally two classes of people: scientists and craftsmen. This book was written for the latter. What I have found in my own personal observation of those that work with wood is that the first class of people, the scientists, are almost drowning in knowledge. Yet the craftsmen, through no particular fault of their own, are suffering in a relative dearth of solid facts and scientific understanding.

Books on the subject of wood usage and identification have all come from one of two very opposite poles. Either there have been craft-oriented books filled with pretty pictures, but with very weak or vague and impractical statements, such as “this wood is strong, hard, and moderately stable,” or else there have been thinly-veiled scientific books, burying the uninitiated in grainy, black-and-white microscope images and confusing terminology.

As I began researching and writing this book, many questions began circling in my head. “Can’t a book exist that features both vivid and accurate pictures, and also solid, usable facts and information on wood species? What’s practically applicable to the realm of woodworking and related trades, and what should be left to the fastidious and exacting eyes of scientists?”

In the midst of these myriad questions, I was debating whether or not to get a microscope and delve into the world of microscopic wood identification. Here I was, probably one of the biggest wood “nuts” around, utterly fascinated by the many types and varieties of wood, when I had an epiphany. “If I personally don’t have any desire to buy and learn to use a microscope to help identify wood, then why in the world would I ever expect anyone else to either?”

At that point, a line had been drawn in the sand. I determined that as I made an effort to learn (and thereafter teach others) about scientific wood data and identification, I didn’t need to consult with the “other side” to see what would be most helpful to them: I was the other side! I realized that I was a woodworker, and not a scientist—and for my purposes, that was not necessarily a bad thing.

A friend of mine who works in Bible translation once told me that in order for a translation to be optimally readable and usable for native peoples, it ultimately must be written by someone whose mother tongue is in the native language, or else it will seem awkward, foreign, and inarticulate.

I am of the opinion that a very similar phenomenon happens whenever any attempt is made from the scientific community to condescend and “write down” to craftspeople: the information trying to be relayed is very good and useful, but it’s spoken from an entirely different background and mindset, and is almost completely lost in translation.

It’s therefore my hope and intention with this book to act as an interpreter in a way, and to traverse the vast and somewhat intimidating territory of scientific wood knowledge, and open a fresh pipeline of practical insight for those who stand to most directly benefit from it: woodworkers.

In our “laboratory,” you’ll find no clean white smocks or stuffy collars. Come on in, shake the sawdust from your hair, brush off those wood chips from your shoulders, and take a moment to learn a bit more about the material that’s probably right under your nose: WOOD!
1 Foundations: What is Wood?

It’s common knowledge that wood comes from trees. What may not be so apparent is the structure of the wood itself, and the individual elements that make up any given piece of lumber. Unlike a mostly homogenous piece of polystyrene, MDF, or other man-made material, wood is an organic material, and has many distinct characteristics which will be helpful to learn.

HARDWOODS AND SOFTWOODS

An immediate and broad distinction that can be made between types of trees (and wood) is the label of hardwood or softwood. This is somewhat of a misnomer, as the label is actually just a separation between angiosperms (flowering plants such as maple, oak, or rosewood), and conifers (cone-bearing trees such as pine, spruce, or fir).

Hardwoods (angiosperms) have broad-leaved foliage, and tend to be deciduous—that is, they lose their leaves in the autumn. (However, many tropical hardwood species exist which are evergreen—they maintain their leaves year-round.) Additionally, hardwood trees tend to have a branched or divided trunk, referred to as a dendritic form.

Softwoods (conifers) tend to have needle or scale-like foliage, though in some uncommon instances, they can have rather broad, flat leaves, such as Kauri (Agathis australis). Most softwood trees are evergreen, however, a few conifers, such as Bald-cypress (Taxodium distichum), lose their foliage in the autumn, hence the “bald” prefix in the common name.

Softwoods tend to have a single, dominant, straight trunk with smaller side branches, referred to as an excurrent form—this cone-shaped growth form helps trees in temperate climates shed snow. Again, there are several conifers that are an exception to this growth form, such as Cedar of Lebanon (Cedrus libani).

The confusion in labels arises in that the wood of angiosperms is not always hard—a glaring example is Balsa (Ochroma pyramidale), which is technically classified as a hardwood. Conversely, the wood of conifers is not necessarily always soft—an example of a relatively hard softwood would be Yew (Taxus spp.). However, as a rule of thumb, hardwoods are of course generally harder than softwoods, and the label is still useful to distinguish between two broad groups of trees and certain characteristics of their wood.
TREE GROWTH

When considering a tree’s growth—whether a tiny sapling, or a one-thousand-year-old giant—there are many features that are common to all species. Besides the basics of the roots, the main stem (trunk), and the leaves and branches, there are growing points at the tips of the stems and roots, called **apical meristems**. These growing points, through cell division, are responsible for the **vertical** growth in trees.

Additionally, sandwiched between the bark and the inner wood is a thin layer or sheath called the **lateral meristem** or **vascular cambium**—usually referred to simply as the **cambium**. This tiny, seemingly magical layer is responsible for practically all of the **horizontal** growth on a tree. The cambium consists of reproductive cells that, by cell division, forms new bark outward, and new wood inward.

It is the seasonal growing activity of the cambium that is responsible for the formation of **growth rings** seen in wood. In temperate zones, the cambium is most active in the spring—this wood is sometimes referred to as **springwood** or **earlywood**, with growth slowing in the summer (called **summerwood** or **latewood**), and completely ceasing in the winter. These differences in growing cycles from year to year form **annual rings**, which are a reasonably accurate indicator of a tree’s age.

In tropical zones, where temperature and seasonal variations are minimal, wood can completely lack...
discernible rings, or they may correspond with various rainy seasons, and thus are more safely referred to as growth rings, and not strictly as annual rings.

SAPWOOD AND HEARTWOOD

As the cambium forms new wood cells, they develop into different sizes, shapes, and orientations to perform a variety of tasks, including food storage, sap conduction, trunk strength, etc. When a tree is young, certain cells within the wood are alive and capable of conducting sap or storing nutrients—this wood is referred to as sapwood.

After a period of years (the number can greatly vary between species of trees), the tree no longer needs the entire trunk to conduct sap, and the cells in the central part of the stem, beginning at the core (called the pith), begin to die. This dead wood which forms at the center of the trunk is thus called heartwood.

The transition from sapwood to heartwood is accompanied by the accumulation of various deposits and substances, commonly referred to as extractives.

Most notably, these extractives are responsible for giving the heartwood its characteristic color: the jet-black color of ebonies (*Diospyros* spp.), the ruby-red of Bloodwood (*Brosimum rubescens*), and the chocolate-brown of Black Walnut (*Juglans nigra*)—each owe their vivid hues to their respective heartwood extractives. Without extractives, the sapwood of nearly all species of wood is a pale color, usually ranging from white to a straw-yellow or gray color.

But heartwood extractives are responsible for more than just color: extractives increase (to varying degrees) the heartwood’s resistance to rot and decay, and give it added stability and hardness. (Sapwood has virtually no resistance to decay.) From a biological standpoint, it’s easy to see the benefits that heartwood brings to the tree as it grows taller and broader. Incidentally, many of these same benefits translate into advantages for woodworkers as well.

However, it should be noted that the transition area from sapwood to heartwood, commonly referred to as sapwood demarcation, can vary from gradual to very abrupt: this can be important in wood projects where decay resistance is needed. A clear line of demarcation helps prevent the inadvertent inclusion of sapwood, and minimizes the risk of subsequent rotting or structural damage.

PLANES OR SURFACES OF WOOD

When discussing processed wood and lumber, it’s necessary to understand which surface of the wood is being referred to. Working within the scope of the growth rings and their orientation within the tree’s trunk, there are three primary planes, or surfaces, that are encountered in processed wood.

The first wood surface is the endgrain (which is by far the most useful plane for wood identification purposes). This surface is sometimes referred to as the transverse surface, or the cross section. This plane is mostly self-explanatory: in processed lumber, it’s the section where a board is typically viewed on its end, and circular growth rings may be clearly observed. For the sake of simplicity and clarity, all references in this book will refer to this wood plane as simply the endgrain.
The second primary wood plane is the **radial surface**. (Think of the word *radiate*: this wood surface radiates out from the center of the log like spokes on a wheel, and crosses the growth rings at a more-or-less 90° angle.) This surface goes by a number of names, and is sometimes called **vertical grain**, or the **quartersawn section**.

The reason for such naming is that when sawing a log, it may be sawn into quarters along the length of the log, forming four long, triangular, wedge-shaped pieces. Next, boards are sawn from each wedge on alternating sides, resulting in boards which (when viewed from the endgrain) have growth rings that are perpendicular to the face and run vertically.

Again, for simplicity and clarity, most references in this book will refer to this wood plane as the **quartersawn surface**. This is perhaps not the standard scientific terminology used, but it’s the most common description used among sawyers and woodworkers.

The third and final surface is the **tangential surface**. (Think of the word *tangent*: the wood surface is more or less on a tangent with the growth rings.) This plane is sometimes called the **flatsawn** or **plainsawn surface**.

The reason for such naming comes again from the process of sawing the log. The normal or “plain” method of sawing a log is to cut straight through in a repetitious sequence, leaving the log flat throughout the entire process. (This is also sometimes called through-and-through sawing.) Most subsequent references in this book will refer to this wood plane as the **flatsawn surface**.

Two methods to saw a log: on the left is an example of a quartersawing sequence. The log is first cut into quarters, and then each quarter is cut on alternating sides to keep the grain as close to vertical as possible, though the grain of the last few smallest boards aren’t perfectly vertical. On the right is an example of flatsawing or plain-sawing. This method produces the least amount of waste and the widest possible boards. Portions of the middle few boards would be nearly quartersawn, though the pith and first few growth rings in the center (called **juvenile wood**) are very unstable.
GRAIN APPEARANCE

Although quartersawn and flatsawn surfaces are named after their original method of sawing, in practice, the terms typically just refer to the angle of the growth rings on a piece of processed lumber, with anything approaching 90° being referred to as quartersawn, and anything near 0° generally considered as flatsawn, regardless of how the log was actually milled.

There’s sometimes an intermediate angle commonly called riftsawn or bastard grain, which corresponds with growth rings angled between approximately 30° to 60°. Although it’s called riftsawn, sawyers today will rarely, if ever, specifically saw up a log in order to get such an angle—usually the name merely serves as a convenient term to describe wood that is not perfectly quartersawn.

Additionally, the term face grain usually denotes the most predominant/widest plane on any given piece of lumber (excluding the endgrain), and does not refer to any specific cut. By observing the angle of the growth rings—as when looking at a stack of boards where only the endgrain is visible—a reasonably accurate prediction of the appearance of the face of the board can be made. Likewise, in many instances where only the face grain of a board is visible, the endgrain may be extrapolated by “reading” the grain pattern. Each grain cut has varying strengths and weakness, and is used in different applications.

Quartersawn boards are very uniform in appearance and are good for long runs of flooring where the boards need to be butted end-to-end with minimal disruption in appearance. Quartersawing also produces the stabllest boards with the least tendency to cup or warp with changes in humidity, which is very useful in many applications, such as for the rails and stiles of raised panel doors. However, because of the extra handling involved with processing the log, and the higher waste factor, quartersawn lumber tends to be more expensive than flatsawn lumber.

Most would agree that flatsawn boards—with their characteristic dome-shaped cathedral grain—tend to yield the most visually striking patterns (and it

Reading the grain: note the appearance of the face grain of these three boards, as well as their corresponding endgrain surfaces beneath. On the left, Beli (Julbernardia pellegriniana) is almost perfectly quartersawn, resulting in a straight, narrowly spaced, and uniform grain pattern. In the middle, Ponderosa Pine (Pinus ponderosa) is flatsawn, resulting in a characteristic “cathedral” grain pattern. On the right, Western Hemlock (Tsuga heterophylla) has a section on the left that is flatsawn, grading down to riftsawn, as reflected on the face of the board, which appears flatsawn on the wild portion on the left, and closer to quartersawn on the straighter and more uniform portion on the right.
should come as no surprise that many veneers are also rotary-sliced from logs to reproduce this appearance. Flatsawn boards are also available in wider dimensions than quartersawn stock, and are well-suited to applications such as raised or floating panels, or other areas where width or appearance are important.

Riftsawn wood lies somewhere between these two aforementioned types. It has a uniform appearance that is very similar to quartersawn wood—and it’s nearly as stable too. On large square posts, such as those used for table legs, riftsawn wood has the added benefit of appearing roughly the same on all four sides (since the growth rings on each of the surfaces are all at approximately 45° angles to the face), whereas quartersawn squares would have two sides that display flatsawn grain, and two with quartersawn grain.

RAYS

A discussion on quartersawn and riftsawn lumber would not be complete without mentioning the most significant visual distinction between the two: presence (or absence) of rays—or perhaps more accurately, the conspicuous presence of rays on the face of the board, known commonly as ray fleck, or ray flakes.

In the same way that quartersawn surfaces radiate out from the center of the log (hence the term radial surface), rays are also oriented in the same direction; for this reason, although rays are always technically present in the wood, they become most visible and pronounced on quartersawn surfaces. (Additionally, end-grain drying checks also tend to occur along the rays.)

The rays seen in this 1× endgrain view of Lacewood (Panopsis spp.) are so large and prevalent, they could easily be mistaken for growth rings.

But even though virtually all woods have rays, only species with wide, conspicuous rays will produce dramatic ray fleck on the quartersawn surface. Perhaps the largest rays are found on woods like Leopardwood (Roupala montana) and Lacewood (Panopsis spp.), so named for the superb ray fleck seen on their quartersawn surfaces.

Domestic woods like oak (Quercus spp.) and sycamore (Platanus spp.) also have easily observable rays. Other woods have more modest ray fleck, such as cherry (Prunus spp.) or elm (Ulmus spp.). Many other species, such as ash (Fraxinus spp.), walnut (Juglans spp.), and chestnut (Castanea spp.), as well as most softwoods, lack visible ray fleck patterns.

It should be noted that ray fleck is not always greeted with enthusiasm: the very same feature that may entice a person to purchase quartersawn oak may also repel another away. In some instances—such as for hardwood floors where a subdued or consistent grain pattern may be desired—ray fleck may be viewed as objectionable or distracting. For this reason, riftsawn woods, most commonly White Oak (Quercus alba), are occasionally offered as a means to reap the benefits of uniformity and stability of quartersawn lumber without the sometimes distracting rays.
Perhaps the most important aspect of woodworking deals with the relationship between wood and moisture. The most skilled builder may plane, chisel, or otherwise finesse a wood project into a flawless work, but if wood moisture is ignored, all will be for naught. Joints will pop loose, wide glued-up panels will warp or split, and flooring planks will retract and reveal unsightly gaps (or expand and buckle).

A fundamental fact is that wood is hygroscopic. This means that wood, almost like a sponge, will gain or lose moisture from the air based upon the conditions of the surrounding environment. But not only does wood gain or lose moisture, but it will also expand or contract according to its moisture level. It’s this swelling and shrinking in finished wood products, often referred to as the wood’s movement in service, that’s responsible for so much mischief and so many malfunctions in woodworking.

When a tree is first felled, it’s considered to be in the green state, denoting its maximum moisture level. This moisture exists in two different forms: as free water that’s contained as liquid in the pores or vessels of the wood itself, and as bound water that’s trapped within the cell walls.

Once a fresh log or piece of lumber is cut and exposed to the air, it will immediately begin losing free water. At this point, the wood does not yet contract or otherwise change in dimension since the fibers are still completely saturated with bound water. Once all the free water has been lost, the wood will reach what is called the fiber saturation point, or simply FSP.

Below the FSP, the wood will then begin to lose moisture in the form of bound water, and an accompanying reduction in the wood’s physical volume will occur. In a practical sense, the wood at this point is now considered to be in a state of drying.

During drying, not all of the bound moisture will be lost: just how much water is lost will ultimately depend upon the temperature and relative humidity (RH) of the surrounding air. At 100% RH, no bound water will be lost. At 0% RH, all the bound water in the wood will be lost, a condition known as ovendry (so-called because a kiln or oven is typically required to completely drive out all moisture).

The amount of water in a given piece of wood is expressed as a percentage of the weight of the water as compared to its ovendry weight. Some species of trees, when they are initially felled, may contain more water by weight than actual wood fiber, resulting in a moisture content (MC) over 100%.
Yellow Birch
Betula alleghaniensis

DISTRIBUTION: Northeastern North America

TREE SIZE: 65–100 ft (20–30 m) tall,
2–3 ft (.6–1 m) trunk diameter

AVERAGE DRIED WEIGHT: 43 lbs/ft³ (690 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .55, .69

JANKA HARDNESS: 1,260 lbf (5,610 N)

MODULUS OF RUPTURE: 16,600 lbf/in² (114.5 MPa)

ELASTIC MODULUS: 2,010,000 lbf/in² (13.86 GPa)

CRUSHING STRENGTH: 8,170 lbf/in² (56.3 MPa)

SHRINKAGE: Radial: 7.3%, Tangential: 9.5%,
Volumetric: 16.8%, T/R Ratio: 1.3

COLOR/APPEARANCE: Heartwood is light reddish brown, with nearly white sapwood. Occasionally figured pieces are seen with a wide, shallow curl similar to the curl found in Black Cherry (Prunus serotina). There is very little color distinction between annual growth rings, giving birch a somewhat dull, uniform appearance.

GRAIN/TEXTURE: Grain is generally straight or slightly wavy; fine, even texture with low natural luster.

ROT RESISTANCE: Rated as PERISHABLE; poor insect/ borer resistance.

ENDGRAIN (10×)

Porosity:
diffuse-porous

Arrangement:
mostly radial multiples

Vessels:
small to medium, numerous

Parenchyma:
margin, and sometimes diffuse-in-aggregates

Rays:
narrow, fairly close spacing

Odor: none

Notes: individual Betula species cannot be reliably separated

WORKABILITY: Generally easy to work with hand and machine tools, though boards with wild grain can cause tearout during planing. Turns, glues, and finishes well.

ALLERGIES/TOXICITY: Birch in the Betula genus has been reported as a sensitizer; can cause skin and respiratory irritation.

PRICING/AVAILABILITY: Very common as plywood; also available in board form. Prices are moderate for a domestic hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

COMMON USES: Plywood, boxes, crates, turned objects, interior trim, and other small specialty wood items.

COMMENTS: Frequently used worldwide for veneer and plywood. One of the highest grades of plywood—with no inner softwood plies as fillers—is referred to as Baltic Birch.

It’s technically not a particular species, but is a general designation of plywood from Russia and nearby Baltic states such as Finland. The plies in these higher grades are thinner and more numerous, imparting greater stiffness and stability.

Masur Birch vase by Steve Earis
Masur Birch is not a particular species of birch, but is rather a grain figure that is most commonly seen in Downy Birch (Betula pubescens) and Silver Birch (Betula pendula). It’s also sometimes known as Karelian Birch—with Karelia being a region between Finland and Russia where the figured wood is sometimes found.

Once surmised to have been caused by the boring larvae of a certain beetle, Masur Birch has been shown to be hereditary,* classifying the name of the variant as Betula pendula var. carelica. Regardless of the exact cause, the resulting figure and appearance is very similar to burl wood or birdseye maple, though of a different origin.

LOOKALIKES: Maple (Acer spp.) and birch may be distinguished by comparing the size of their pores in relation to the rays (when observed from the endgrain). In maple, the widest rays are about the same width as the pores, while in birch the rays are noticeably narrower than the pores.

* Risto Hagqvist, Curly Birch (Betula pendula var. carelica) and its Management in Finland, (Karkkilantie: Finnish Forest Research Institute, 2007).

RELATED SPECIES

<table>
<thead>
<tr>
<th>RELATED SPECIES</th>
<th>AVERAGE DRIED WEIGHT</th>
<th>JANKA HARDNESS</th>
<th>MODULUS OF RUPTURE</th>
<th>ELASTIC MODULUS</th>
<th>CRUSHING STRENGTH</th>
<th>SHRINKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alder-Leaf Birch</td>
<td>33 lbs/ft³ (530 kg/m³)</td>
<td>830 lb_f (3,690 N)</td>
<td>8,980 lb_f/in² (61.9 MPa)</td>
<td>1,235,000 lb_f/in² (8.52 GPa)</td>
<td>6,400 lb_f/in² (44.1 MPa)</td>
<td>Radial–5% Tangential–7% Volumetric–13% T/R Ratio–1.4</td>
</tr>
<tr>
<td>Sweet Birch</td>
<td>46 lbs/ft³ (735 kg/m³)</td>
<td>1,470 lb_f (6,540 N)</td>
<td>16,900 lb_f/in² (116.6 MPa)</td>
<td>2,170,000 lb_f/in² (11.59 MPa)</td>
<td>8,540 lb_f/in² (58.9 MPa)</td>
<td>Radial–6.5% Tangential–9.0% Volumetric–15.6% T/R Ratio–1.4</td>
</tr>
<tr>
<td>Alaska Paper Birch</td>
<td>38 lbs/ft³ (610 kg/m³)</td>
<td>830 lb_f (3,690 N)</td>
<td>13,600 lb_f/in² (93.8 MPa)</td>
<td>1,900,000 lb_f/in² (13.10 MPa)</td>
<td>7,450 lb_f/in² (51.4 MPa)</td>
<td>Radial–6.5% Tangential–9.9% Volumetric–16.7% T/R Ratio–1.5</td>
</tr>
<tr>
<td>River Birch</td>
<td>37 lbs/ft³ (590 kg/m³)</td>
<td>970 lb_f (4,320 N)*</td>
<td>13,100 lb_f/in² (90.3 MPa)</td>
<td>1,580,000 lb_f/in² (10.90 MPa)</td>
<td>No data available</td>
<td>Radial–4.7% Tangential–9.2% Volumetric–13.5% T/R Ratio–2.0</td>
</tr>
<tr>
<td>Paper Birch</td>
<td>38 lbs/ft³ (610 kg/m³)</td>
<td>910 lb_f (4,050 N)</td>
<td>12,300 lb_f/in² (84.8 MPa)</td>
<td>1,590,000 lb_f/in² (10.97 MPa)</td>
<td>5,690 lb_f/in² (39.2 MPa)</td>
<td>Radial–6.3% Tangential–8.6% Volumetric–16.2% T/R Ratio–1.4</td>
</tr>
<tr>
<td>Silver Birch</td>
<td>40 lbs/ft³ (640 kg/m³)</td>
<td>1,210 lb_f (5,360 N)</td>
<td>16,570 lb_f/in² (114.3 MPa)</td>
<td>2,024,000 lb_f/in² (13.96 MPa)</td>
<td>No data available</td>
<td>No data available</td>
</tr>
<tr>
<td>Gray Birch</td>
<td>35 lbs/ft³ (560 kg/m³)</td>
<td>760 lb_f (3,380 N)</td>
<td>9,800 lb_f/in² (67.6 MPa)</td>
<td>1,150,000 lb_f/in² (7.93 MPa)</td>
<td>4,870 lb_f/in² (33.6 MPa)</td>
<td>Radial–5.2% Tangential–9.5% Volumetric–14.7% T/R Ratio–1.8</td>
</tr>
</tbody>
</table>
African Padauk

Pterocarpus soyauxii

COLOR/APPEARANCE: Heartwood ranges from pinkish orange to deep brownish red. Most pieces tend to start reddish orange when freshly cut, darkening substantially over time to a reddish brown (some lighter-colored pieces age to a grayish brown).

GRAIN/TEXTURE: Grain is usually straight, but can sometimes be interlocked; coarse, open texture with good natural luster.

ROT RESISTANCE: Rated as durable to very durable; excellent resistance to termites and other insects.

WORKABILITY: Generally easy to work, though tearout can occur during planing on quartersawn or interlocked grain. Turns, glues, and finishes well.

ALLERGIES/TOXICITY: Reported as a sensitizer; can cause eye, skin, and respiratory irritation.

PRICING/AVAILABILITY: Widely imported as lumber in a variety of sizes, as well as turning and craft blanks. Prices are in the mid range for an imported hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

COMMON USES: Veneer, flooring, turned objects, musical instruments, furniture, tool handles, and other small specialty wood objects.

COMMENTS: With a very unique reddish orange coloration, the wood is also called Vermillion. Unfortunately, this dramatic color is inevitably darkened to a deep reddish brown color. UV-inhibiting finishes may prolong (but not prevent) the gradual color-shift of this brightly colored wood.

ENDGRAIN (10×)

Porosity: diffuse-porous

Arrangement: solitary and radial multiples

Vessels: very large, very few, orange/brown deposits present

Parenchyma: diffuse-in-aggregates, winged, confluent, and banded

Rays: narrow, close spacing

Odor: pleasing scent when being worked

Notes: fluoresces under blacklight; ripple marks present
Amendoim

Pterogyne nitens

DISTRIBUTION: Scattered throughout southern South America

TREE SIZE: 50–75 ft (15–23 m) tall, 2–3 ft (.6–1 m) trunk diameter

AVERAGE DRIED WEIGHT: 50 lbs/ft³ (800 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .66, .80

JANKA HARDNESS: 1,780 lb f (7,940 N)

MODULUS OF RUPTURE: 15,780 lb f/in² (108.8 MPa)

ELASTIC MODULUS: 1,771,000 lb f/in² (12.21 GPa)

CRUSHING STRENGTH: 7,500 lb f/in² (51.7 MPa)

SHRINKAGE: Radial: 3.4%, Tangential: 6.0%, Volumetric: 10.0%, T/R Ratio: 1.8

This wood is called by a myriad of local and regional names, but it’s simply marketed as Amendoim in the United States. The wood’s overall appearance is very similar to mahogany (*Swietenia* spp.), and it’s primarily sold as flooring planks. Prices are in the mid range for an imported South American species.

Amendoim has a blunting effect on cutters due to its naturally high silica content. It turns, glues, and finishes well, and also responds well to steam bending.

Pear

Pyrus communis

DISTRIBUTION: Central and eastern Europe; also widely planted in temperate regions worldwide

TREE SIZE: 20–30 ft (6–9 m) tall, 6–12 in (15–30 cm) trunk diameter

AVERAGE DRIED WEIGHT: 43 lbs/ft³ (690 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .52, .69

JANKA HARDNESS: 1,660 lb f (7,380 N)

MODULUS OF RUPTURE: 12,080 lb f/in² (83.3 MPa)

ELASTIC MODULUS: 1,131,000 lb f/in² (7.80 GPa)

CRUSHING STRENGTH: 6,400 lb f/in² (44.1 MPa)

SHRINKAGE: Radial: 3.9%, Tangential: 11.3%, Volumetric: 13.8%, T/R Ratio: 2.9

Used in Europe much in the same way that Black Cherry (*Prunus serotina*) is utilized in North America: as a high-quality cabinet hardwood. Both woods are in the *Rosaceae* or Rose family and belong to a broader category simply labeled as *fruitwood*. Both Pear and Cherry are similar visually and anatomically (though Pear tends to have narrower rays), and the two can’t be reliably separated.

Pear is sometimes steamed to deepen the pink coloration, or it’s dyed black and used as a substitute for ebony. Larger logs are commonly turned into veneer for architectural purposes.
Distinguishing Red Oak from White Oak

Within the massive *Quercus* genus, oak species are subdivided into a number of sections, though all commercially harvested New World oaks can be placed into one of two categories: red oak, or white oak. This division is based on the morphology of the trees themselves—for instance, red oaks have pointed lobes on the leaves, while white oaks have rounded lobes. But the wood also has a few important distinctions, most notably, white oak is rot resistant, while red oak is not—an important detail for boatbuilding and exterior construction projects.

Besides the leaves, there are a few other ways to distinguish between the two groupings of oak wood.

TYLOSES: When viewing the endgrain, the large early-wood pores found on red oaks are open and empty. The pores of white oaks, however, are all plugged with tyloses (bubble-like structures: discussed on page 32). Corresponding endgrain images of red and white oak are shown on their respective profiles over the next few pages.

RAY HEIGHT: When looking at the face grain, particularly in the flatsawn areas, the thin dark brown streaks running with the grain direction are rays. Red oaks will almost always have very short rays, usually between $\frac{1}{8}$" to $\frac{1}{2}$" high, rarely ever more than $\frac{3}{4}$" to 1" in height. White oaks, on the other hand, will have much taller rays, frequently exceeding $\frac{3}{4}$" on most boards.

CHEMICAL TESTING: The process for differentiating between red and white oaks using a chemical reagent (along with a recipe for mixing a solution of sodium nitrite) is described on page 22.

At a casual glance, unfinished oak lumber will generally be light brown, either with a slight reddish cast (usually red oak), or a subtle olive-colored cast (white oak). However, there are abnormally light or dark outliers and pieces that are ambiguously colored, making separation based on color alone unreliable—which is especially true if the wood is finished and/or stained.

While there is one particular species that’s commonly considered the White Oak (*Quercus alba*), and one particular species that’s considered the Red Oak (*Quercus rubra*), in reality, oak lumber is not sold on a species level. Instead, it’s sold under a broader species grouping: either red or white.

A typical red oak leaf is shown on the left (note the pointed lobes). The rounded lobes of white oak are seen on the right.

Black Oak (*Quercus velutina*) is pictured on the left, and exhibits very short rays, indicative of red oak species. The image on the right shows the longer rays that are characteristic of flatsawn sections of the white oak species—in this case, Swamp Chestnut Oak (*Quercus michauxii*).
COLOR/APPEARANCE: Heartwood is light to medium brown, commonly with an olive cast. White to light brown sapwood isn’t always sharply demarcated from the heartwood. Quartersawn sections display prominent ray fleck patterns.

GRAIN/TEXTURE: Grain is straight; coarse, uneven texture.

ROT RESISTANCE: Rated as very durable; frequently used in boatbuilding and tight cooperage applications.

WORKABILITY: Produces good results with hand and machine tools. Moderately high shrinkage values, resulting in mediocre dimensional stability, especially in flatsawn boards. Can react with iron (particularly when wet) and cause staining and discoloration. Responds well to steam bending. Glues, stains, and finishes well.

ALLERGIES/TOXICITY: Reported as a sensitizer; can cause eye and skin irritation, runny nose, asthma-like respiratory effects, and nasopharyngeal cancer (with occupational exposure).

PRICING/AVAILABILITY: Abundant availability in a range of widths and thicknesses, both as flatsawn and quartersawn lumber. Slightly more expensive than Red Oak (*Q. rubra*), prices are moderate for a domestic hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

DISTRIBUTION: Eastern United States

TREE SIZE: 65–85 ft (20–25 m) tall, 3–4 ft (1–1.2 m) trunk diameter

AVERAGE DRIED WEIGHT: 47 lbs/ft³ (755 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .60, .75

JANKA HARDNESS: 1,360 lb* (6,000 N)

MODULUS OF RUPTURE: 15,200 lb* /in² (104.8 MPa)

ELASTIC MODULUS: 1,780,000 lb* /in² (12.30 GPa)

CRUSHING STRENGTH: 7,440 lb* /in² (51.3 MPa)

SHRINKAGE: Radial: 5.6%, Tangential: 10.5%, Volumetric: 16.3%, T/R Ratio: 1.9

COMMON USES: Cabinetry, furniture, interior trim, flooring, boatbuilding, barrels, and veneer.

COMMENTS: Strong, beautiful, rot-resistant, easy to work, and economical, White Oak represents an exceptional value to woodworkers. It’s no wonder that the wood is so widely used in cabinet and furniture making. Connecticut’s state quarter was minted with a picture and inscription of a famous White Oak, the Charter Oak. In 1687, a cavity within the tree was used as a hiding place for the Connecticut Charter of 1662 to prevent its confiscation by the British.
Oregon White Oak (Quercus garryana), sometimes referred to as Garry Oak, is one of the only species of oak found in the Pacific Northwest region of North America. It’s roughly the western equivalent to the eastern white oaks, though not nearly as widespread, nor as commercially important.

INTERNATIONAL: In Europe, Sessile Oak (Quercus petraea) bears much similarity to the white oak species found in North America. However, being native to Europe, the wood is much more frequently seen with English Oak (Quercus robur), a tremendously popular species listed separately on page 214. Both European species are commercially important, and are harvested and sold for the same purposes as American white oaks.

RELATED SPECIES

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>AVERAGE DRIED WEIGHT</th>
<th>JANKA HARDNESS</th>
<th>MODULUS OF RUPTURE</th>
<th>ELASTIC MODULUS</th>
<th>CRUSHING STRENGTH</th>
<th>SHRINKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swamp White Oak</td>
<td>48 lbs/ft³ (765 kg/m³)</td>
<td>1,600 lbf (7,140 N)</td>
<td>17,400 lbf/in² (120.0 MPa)</td>
<td>2,029,000 lbf/in² (13.99 GPa)</td>
<td>8,400 lbf/in² (57.9 MPa)</td>
<td>Radial: 5.5% Tangential: 10.6% Volumetric: 17.7% T/R Ratio: 1.9</td>
</tr>
<tr>
<td>Overcup Oak</td>
<td>47 lbs/ft³ (760 kg/m³)</td>
<td>1,190 lbf (5,290 N)</td>
<td>12,600 lbf/in² (86.9 MPa)</td>
<td>1,420,000 lbf/in² (9.79 GPa)</td>
<td>6,200 lbf/in² (42.8 MPa)</td>
<td>Radial: 5.3% Tangential: 12.7% Volumetric: 16.0% T/R Ratio: 2.4</td>
</tr>
<tr>
<td>Bur Oak</td>
<td>45 lbs/ft³ (720 kg/m³)</td>
<td>1,360 lbf (6,030 N)</td>
<td>10,920 lbf/in² (75.3 MPa)</td>
<td>1,040,000 lbf/in² (7.17 GPa)</td>
<td>5,890 lbf/in² (40.6 MPa)</td>
<td>Radial: 4.4% Tangential: 8.8% Volumetric: 12.7% T/R Ratio: 2.0</td>
</tr>
<tr>
<td>Swamp Chestnut Oak</td>
<td>49 lbs/ft³ (780 kg/m³)</td>
<td>1,230 lbf (5,460 N)</td>
<td>13,760 lbf/in² (94.9 MPa)</td>
<td>1,753,000 lbf/in² (12.09 GPa)</td>
<td>7,200 lbf/in² (49.6 MPa)</td>
<td>Radial: 5.2% Tangential: 10.8% Volumetric: 16.4% T/R Ratio: 2.1</td>
</tr>
<tr>
<td>Chestnut Oak</td>
<td>47 lbs/ft³ (750 kg/m³)</td>
<td>1,130 lbf (5,030 N)</td>
<td>13,300 lbf/in² (91.7 MPa)</td>
<td>1,590,000 lbf/in² (10.97 GPa)</td>
<td>6,830 lbf/in² (47.1 MPa)</td>
<td>Radial: 5.3% Tangential: 10.8% Volumetric: 16.4% T/R Ratio: 2.0</td>
</tr>
<tr>
<td>Post Oak</td>
<td>47 lbs/ft³ (750 kg/m³)</td>
<td>1,350 lbf (5,990 N)</td>
<td>13,070 lbf/in² (90.1 MPa)</td>
<td>1,495,000 lbf/in² (10.31 GPa)</td>
<td>6,530 lbf/in² (45.1 MPa)</td>
<td>Radial: 5.4% Tangential: 9.8% Volumetric: 16.2% T/R Ratio: 1.8</td>
</tr>
</tbody>
</table>
COLOR/APPEARANCE: Heartwood is light to medium brown, commonly with a reddish cast. White to light brown sapwood isn’t always sharply demarcated from the heartwood. Quartersawn sections display prominent ray fleck patterns.

GRAIN/TEXTURE: Grain is straight; coarse, uneven texture.

ROT RESISTANCE: Rated as NON-DURABLE TO PERISHABLE; poor insect/borer resistance. Stains when in contact with water (particularly along the porous growth ring areas).

WORKABILITY: Produces good results with hand and machine tools. Moderately high shrinkage values, resulting in mediocre dimensional stability, especially in flatsawn boards. Responds well to steam bending. Glues, stains, and finishes well.

ALLERGIES/TOXICITY: Reported as a sensitizer; can cause eye and skin irritation, runny nose, asthma-like respiratory effects, and nasopharyngeal cancer (with occupational exposure).

PRICING/AVAILABILITY: Abundant availability in a good range of widths and thicknesses, both as flatsawn and quartersawn lumber. Usually slightly less expensive than White Oak (Q. alba), prices are moderate for a domestic hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

COMMON USES: Cabinetry, furniture, interior trim, flooring, and veneer.

COMMENTS: Arguably the most popular hardwood in the United States, Red Oak is a ubiquitous sight in many homes. Even many vinyl/imitation wood surfaces are printed to look like Red Oak.

ENDGRAIN (10×)
Porosity: ring-porous
Arrangement: earlywood exclusively solitary in two to four rows, latwood in radial/dendritic arrangement
Vessels: very large in earlywood, small in latwood; tyloses absent or scarce
Parenchyma: diffuse-in-aggregates
Rays: narrow and very wide, normal spacing
Odor: distinct scent when being worked
Quercus rubra (seen on facing page) is sometimes referred to more specifically as Northern Red Oak to help distinguish it from Southern Red Oak (Q. falcata), a species that’s sold interchangeably in the red oak grouping, though the wood of the southern species is typically of inferior quality (as seen by the mechanical data below).

There are also a number of other species of oak native to the eastern United States (listed below) which are harvested and sold within the red oak group. Cherrybark Oak (Q. pagoda) and Shumard Oak (Q. shumardii) rank among the strongest and highest-quality timbers in the red oak group. At the opposite end of the spectrum is Laurel Oak (Q. laurifolia), which is typically only used for firewood or as pulpwood in papermaking.

One geographic outlier is California Black Oak (Q. kelloggii), found on the west coast of the United States. Historically, it’s been regarded very lowly, but more recently efforts have been made to utilize this tree for lumber.

RELATED SPECIES

<table>
<thead>
<tr>
<th>RELATED SPECIES</th>
<th>AVERAGE DRIED WEIGHT</th>
<th>JANKA HARDNESS</th>
<th>MODULUS OF RUPTURE</th>
<th>ELASTIC MODULUS</th>
<th>CRUSHING STRENGTH</th>
<th>SHRINKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarlet Oak</td>
<td>66 lbs/ft³ (735 kg/m³)</td>
<td>1,400 lb_f (6,230 N)</td>
<td>16,080 lb_f/in² (110.9 MPa)</td>
<td>1,766,000 lb_f/in² (12.18 GPa)</td>
<td>8,250 lb_f/in² (56.9 MPa)</td>
<td>Radial=4.4% Tangential=10.8% Volumetric=14.7% T/R Ratio=2.5</td>
</tr>
<tr>
<td>Quercus coccinea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Red Oak</td>
<td>42 lbs/ft³ (675 kg/m³)</td>
<td>1,060 lb_f (4,720 N)</td>
<td>12,040 lb_f/in² (83.0 MPa)</td>
<td>1,480,000 lb_f/in² (10.20 GPa)</td>
<td>6,090 lb_f/in² (42.0 MPa)</td>
<td>Radial=4.7% Tangential=11.3% Volumetric=16.1% T/R Ratio=2.4</td>
</tr>
<tr>
<td>Quercus falcata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Black Oak</td>
<td>39 lbs/ft³ (620 kg/m³)</td>
<td>1,090 lb_f (4,840 N)</td>
<td>8,610 lb_f/in² (59.4 MPa)</td>
<td>980,000 lb_f/in² (6.76 GPa)</td>
<td>5,640 lb_f/in² (38.9 MPa)</td>
<td>Radial=3.6% Tangential=6.6% Volumetric=10.2% T/R Ratio=1.8</td>
</tr>
<tr>
<td>Quercus kelloggii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurel Oak</td>
<td>46 lbs/ft³ (740 kg/m³)</td>
<td>1,210 lb_f (5,380 N)</td>
<td>14,330 lb_f/in² (98.8 MPa)</td>
<td>1,793,000 lb_f/in² (12.37 GPa)</td>
<td>6,980 lb_f/in² (48.1 MPa)</td>
<td>Radial=4.0% Tangential=9.9% Volumetric=19.0% T/R Ratio=2.5</td>
</tr>
<tr>
<td>Quercus laurifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Oak</td>
<td>45 lbs/ft³ (725 kg/m³)</td>
<td>1,190 lb_f (5,290 N)</td>
<td>16,620 lb_f/in² (114.6 MPa)</td>
<td>2,034,000 lb_f/in² (14.02 GPa)</td>
<td>6,770 lb_f/in² (46.7 MPa)</td>
<td>Radial=4.4% Tangential=9.8% Volumetric=16.1% T/R Ratio=2.2</td>
</tr>
<tr>
<td>Quercus nigra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherrybark Oak</td>
<td>49 lbs/ft³ (785 kg/m³)</td>
<td>1,480 lb_f (6,580 N)</td>
<td>18,100 lb_f/in² (124.8 MPa)</td>
<td>2,280,000 lb_f/in² (15.72 GPa)</td>
<td>8,740 lb_f/in² (60.3 MPa)</td>
<td>Radial=5.5% Tangential=10.6% Volumetric=16.1% T/R Ratio=1.9</td>
</tr>
<tr>
<td>Quercus pagoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin Oak</td>
<td>44 lbs/ft³ (705 kg/m³)</td>
<td>1,500 lb_f (6,650 N)</td>
<td>13,860 lb_f/in² (95.6 MPa)</td>
<td>1,713,000 lb_f/in² (11.81 GPa)</td>
<td>6,750 lb_f/in² (46.6 MPa)</td>
<td>Radial=4.3% Tangential=9.5% Volumetric=14.5% T/R Ratio=2.2</td>
</tr>
<tr>
<td>Quercus palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow Oak</td>
<td>48 lbs/ft³ (770 kg/m³)</td>
<td>1,460 lb_f (6,490 N)</td>
<td>14,860 lb_f/in² (102.4 MPa)</td>
<td>1,804,000 lb_f/in² (12.44 GPa)</td>
<td>7,040 lb_f/in² (48.6 MPa)</td>
<td>Radial=5.0% Tangential=9.6% Volumetric=18.9% T/R Ratio=1.9</td>
</tr>
<tr>
<td>Quercus phellos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shumard Oak</td>
<td>46 lbs/ft³ (730 kg/m³)</td>
<td>1,290 lb_f (5,750 N)*</td>
<td>17,830 lb_f/in² (123.0 MPa)</td>
<td>2,154,000 lb_f/in² (14.86 GPa)</td>
<td>No data available</td>
<td>No data available</td>
</tr>
<tr>
<td>Quercus shumardii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Oak</td>
<td>45 lbs/ft³ (715 kg/m³)</td>
<td>1,210 lb_f (5,380 N)</td>
<td>14,430 lb_f/in² (99.5 MPa)</td>
<td>1,736,000 lb_f/in² (11.97 GPa)</td>
<td>6,450 lb_f/in² (44.5 MPa)</td>
<td>Radial=4.4% Tangential=11.1% Volumetric=15.1% T/R Ratio=2.5</td>
</tr>
<tr>
<td>Quercus velutina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulus of Elasticity

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>E (10^6 lb/in²)</th>
<th>GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicoryphoea flava</td>
<td>3.75</td>
<td>26.02</td>
</tr>
<tr>
<td>Chlorocephalum rossii</td>
<td>3.57</td>
<td>24.64</td>
</tr>
<tr>
<td>miyazakii</td>
<td>3.50</td>
<td>24.16</td>
</tr>
<tr>
<td>Brosimum guianense</td>
<td>3.54</td>
<td>24.03</td>
</tr>
<tr>
<td>Manilkara bidentata</td>
<td>3.27</td>
<td>22.23</td>
</tr>
<tr>
<td>Dipladenia rubescens</td>
<td>3.20</td>
<td>22.07</td>
</tr>
<tr>
<td>Handroanthus spp.</td>
<td>3.20</td>
<td>22.07</td>
</tr>
<tr>
<td>Dalbergia nigra</td>
<td>3.18</td>
<td>21.95</td>
</tr>
<tr>
<td>Acacia obovata*</td>
<td>3.03</td>
<td>20.78</td>
</tr>
<tr>
<td>Brosimum rubescens</td>
<td>2.96</td>
<td>20.46</td>
</tr>
<tr>
<td>Krugiodendron ferreum</td>
<td>2.96</td>
<td>20.46</td>
</tr>
<tr>
<td>Eucalyptus diversicolor</td>
<td>2.95</td>
<td>20.44</td>
</tr>
<tr>
<td>Manilkara zapota</td>
<td>2.90</td>
<td>20.31</td>
</tr>
<tr>
<td>Peltogyne spp.</td>
<td>2.80</td>
<td>19.90</td>
</tr>
<tr>
<td>Koombang malaccensis</td>
<td>2.19</td>
<td>15.03</td>
</tr>
<tr>
<td>Roupala montana</td>
<td>2.87</td>
<td>19.91</td>
</tr>
<tr>
<td>Platymiscium spp.</td>
<td>2.87</td>
<td>19.91</td>
</tr>
<tr>
<td>Zygia racemosa</td>
<td>2.86</td>
<td>19.83</td>
</tr>
<tr>
<td>Bambusa spp.</td>
<td>2.75</td>
<td>19.00</td>
</tr>
<tr>
<td>Lophira alata</td>
<td>1.94</td>
<td>13.59</td>
</tr>
<tr>
<td>Moreletia alocarnilis</td>
<td>2.74</td>
<td>19.03</td>
</tr>
<tr>
<td>Hymenaea courbaril</td>
<td>2.74</td>
<td>19.03</td>
</tr>
<tr>
<td>Metopium tomenti</td>
<td>2.71</td>
<td>18.76</td>
</tr>
<tr>
<td>Eucalyptus globulus</td>
<td>2.71</td>
<td>18.76</td>
</tr>
<tr>
<td>Caesalpinia paraguariensis*</td>
<td>2.71</td>
<td>18.76</td>
</tr>
<tr>
<td>Dalbergia retusa</td>
<td>2.70</td>
<td>18.63</td>
</tr>
<tr>
<td>Guburra eufm</td>
<td>2.70</td>
<td>18.63</td>
</tr>
<tr>
<td>Anadenanthera macrocarpa</td>
<td>2.70</td>
<td>18.63</td>
</tr>
<tr>
<td>Dalbergia melanoxylon</td>
<td>2.63</td>
<td>18.35</td>
</tr>
<tr>
<td>Vouacapoua americana</td>
<td>2.56</td>
<td>17.85</td>
</tr>
<tr>
<td>Olea spp.</td>
<td>2.56</td>
<td>17.85</td>
</tr>
<tr>
<td>Caesalpinia plactyloba</td>
<td>2.56</td>
<td>17.85</td>
</tr>
<tr>
<td>Millingtonia hortensis</td>
<td>2.54</td>
<td>17.67</td>
</tr>
<tr>
<td>Caesalpinia echnantha</td>
<td>2.54</td>
<td>17.67</td>
</tr>
<tr>
<td>Prosopis kuntzei</td>
<td>2.51</td>
<td>17.59</td>
</tr>
<tr>
<td>Diospyros pentaphylla</td>
<td>2.49</td>
<td>17.20</td>
</tr>
<tr>
<td>Buxus sempervirens</td>
<td>2.49</td>
<td>17.20</td>
</tr>
<tr>
<td>Combretum tomentosum</td>
<td>2.49</td>
<td>17.20</td>
</tr>
<tr>
<td>Bobbunia fistulosoides</td>
<td>2.48</td>
<td>17.08</td>
</tr>
<tr>
<td>Shorea spp. (Balaia)</td>
<td>2.47</td>
<td>16.95</td>
</tr>
<tr>
<td>Dioprosopus crassifolius</td>
<td>2.49</td>
<td>17.20</td>
</tr>
<tr>
<td>Euphyllophora paranaensis</td>
<td>2.47</td>
<td>16.89</td>
</tr>
<tr>
<td>Schlechteria spp.</td>
<td>2.43</td>
<td>16.64</td>
</tr>
<tr>
<td>Astronium graveolens</td>
<td>2.39</td>
<td>16.56</td>
</tr>
<tr>
<td>Ebenaceae ebon</td>
<td>2.39</td>
<td>16.56</td>
</tr>
<tr>
<td>Myrsine balsamum</td>
<td>2.38</td>
<td>16.47</td>
</tr>
<tr>
<td>Piptadenia spp.</td>
<td>2.38</td>
<td>16.47</td>
</tr>
<tr>
<td>Dalbergia latifolia</td>
<td>2.37</td>
<td>16.41</td>
</tr>
<tr>
<td>Acacia microcarpa</td>
<td>2.37</td>
<td>16.41</td>
</tr>
<tr>
<td>Microbrotia braziliensis</td>
<td>2.34</td>
<td>16.27</td>
</tr>
<tr>
<td>Julbernardia piligynoides</td>
<td>2.34</td>
<td>16.27</td>
</tr>
<tr>
<td>Intsia bijuga</td>
<td>2.32</td>
<td>16.12</td>
</tr>
<tr>
<td>Diptecarpus spp.</td>
<td>2.32</td>
<td>16.12</td>
</tr>
<tr>
<td>Calycodendron floribundum</td>
<td>2.32</td>
<td>16.12</td>
</tr>
<tr>
<td>Mittellia stuhlmannii</td>
<td>2.32</td>
<td>16.12</td>
</tr>
<tr>
<td>Quercus griffithii</td>
<td>2.32</td>
<td>16.12</td>
</tr>
<tr>
<td>Buinesia arborea</td>
<td>2.23</td>
<td>15.80</td>
</tr>
<tr>
<td>Borassus flabellifer</td>
<td>2.23</td>
<td>15.80</td>
</tr>
<tr>
<td>Caryocar brasiliense</td>
<td>2.19</td>
<td>15.63</td>
</tr>
<tr>
<td>Apuleia leucoarpa</td>
<td>2.18</td>
<td>15.55</td>
</tr>
<tr>
<td>Caryota tomentosa</td>
<td>2.20</td>
<td>15.51</td>
</tr>
<tr>
<td>Pinus slavis</td>
<td>2.19</td>
<td>15.42</td>
</tr>
<tr>
<td>Berchemia zeyheri</td>
<td>2.19</td>
<td>15.42</td>
</tr>
<tr>
<td>Betula lentia</td>
<td>2.14</td>
<td>14.93</td>
</tr>
<tr>
<td>Centrumbolium spp.</td>
<td>2.14</td>
<td>14.93</td>
</tr>
<tr>
<td>Pinus merkusii</td>
<td>2.16</td>
<td>14.90</td>
</tr>
<tr>
<td>Cana ovata</td>
<td>2.16</td>
<td>14.90</td>
</tr>
<tr>
<td>Maclura tinctoria</td>
<td>2.16</td>
<td>14.90</td>
</tr>
<tr>
<td>Quercus shumardii</td>
<td>2.16</td>
<td>14.90</td>
</tr>
<tr>
<td>Acacia melanoxylon</td>
<td>2.16</td>
<td>14.90</td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
<td>2.17</td>
<td>14.60</td>
</tr>
<tr>
<td>Acacia aurantiaca</td>
<td>2.11</td>
<td>14.56</td>
</tr>
<tr>
<td>Chloroxylon swietenia</td>
<td>2.11</td>
<td>14.56</td>
</tr>
<tr>
<td>Afzelia xanthoxyloides</td>
<td>2.14</td>
<td>14.44</td>
</tr>
<tr>
<td>Fagus syatica</td>
<td>2.07</td>
<td>14.25</td>
</tr>
<tr>
<td>Eucalyptus obliqua</td>
<td>2.07</td>
<td>14.25</td>
</tr>
<tr>
<td>Eucalyptus grandis</td>
<td>2.12</td>
<td>14.15</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>2.12</td>
<td>14.15</td>
</tr>
<tr>
<td>Eucalyptus unicolor</td>
<td>2.09</td>
<td>14.14</td>
</tr>
<tr>
<td>Eucalyptus robusta</td>
<td>2.04</td>
<td>14.07</td>
</tr>
<tr>
<td>Gaiacum officinale</td>
<td>2.04</td>
<td>14.07</td>
</tr>
<tr>
<td>Dipsacus ferrugineus</td>
<td>2.04</td>
<td>14.07</td>
</tr>
<tr>
<td>Quercus nigra</td>
<td>2.03</td>
<td>14.02</td>
</tr>
<tr>
<td>Eugenia nigrang</td>
<td>2.03</td>
<td>14.02</td>
</tr>
<tr>
<td>Eucalyptus melliodora</td>
<td>2.03</td>
<td>14.02</td>
</tr>
<tr>
<td>Gaiacum hysenaelioida</td>
<td>2.02</td>
<td>14.02</td>
</tr>
<tr>
<td>Quercus cordata</td>
<td>2.02</td>
<td>14.02</td>
</tr>
<tr>
<td>Betula pendula</td>
<td>2.04</td>
<td>14.09</td>
</tr>
<tr>
<td>Dalbergia latifolia</td>
<td>2.04</td>
<td>14.09</td>
</tr>
<tr>
<td>Carya aquatica</td>
<td>2.05</td>
<td>14.13</td>
</tr>
<tr>
<td>Prosopis africana</td>
<td>2.05</td>
<td>14.13</td>
</tr>
</tbody>
</table>

*Estimated/strength group values

All values are for wood at 12%MC

Appendix C: Modulus of Elasticity masterlist

Acknowledgements

STEVE EARIS: A professional woodturner from the United Kingdom, Steve has access to a lot of different wood species that are not seen nearly as frequently across the pond. As can be seen from the list below, he has donated quite a few samples and photos of finished turnings. The author is truly indebted to Steve’s generosity! More of his work can be found at www.steveswoodenwonders.co.uk, as well as his site of turned skittle pins and balls: www.steveswoodenskittles.co.uk.

Donations:
- Amboyna
- Ash, Olive
- Balsa
- Birch, Masur
- Blackwood, African
- Blackwood, Australian
- Bosse
- Boxwood
- Bubinga
- Bulletwood
- Cebil
- Cedar of Lebanon
- Cherry, Sweet
- Chestnut, Horse
- Cocobolo
- Ebony, Gaboon
- Ekki
- Elm, English
- Goncalo Alves
- Holly, English
- Hornbeam, European
- Imbuia
- Idigbo
- Iroko
- Jarrah
- Kingwood
- Laburnum
- Leadwood
- Lemonwood
- Lime, European
- Madrone (burl)
- Mahogany, African
- Mansonia
- Maple, Quilted
- Mulberry
- Myrtle, Tasmanian
- Oak, Bog
- Oak, Brown
- Oak, English
- Oak, Holm
- Obeche
- Okoume
- Olive
- Osage Orange
- Padauk, African
- Padauk, Andaman
- Pau Rosa
- Pear
- Peroba Rosa
- Yellow Poplar
- Primavera
- Purpleheart
- Rosewood, Amazon
- Rosewood, East Indian
- Rosewood, Honduran
- Rosewood, Madagascar
- Satinwood, East Indian
- Sheoak
- Silky Oak, Northern
- Spruce, Sitka
- Tambootie
- Tulipwood
- Verawood
- Walnut, African
- Walnut, Black (crotch)
- Walnut, English
- Wenge
- Willow, Black (face grain)
- Yellowheart
- Yew
- Zircote

KEN FORDEN: Located in Whitethorn, California, Ken has a small hardwood mill that specializes in native Californian woods. His website features slabs, flooring, molding, and lumber: www.californiahardwoods.net.

Donations:
- Myrtle
- Walnut, Claro

JUSTIN HOLDEN: From old standbys to hard-to-find rarities, Justin has donated a number of nice samples from around the world. He sells single pieces upwards to entire pallets worth of exotic and tropical species through his eBay store: http://stores.ebay.com/exoticwoodsoftheworld.

Donations:
- Afrormosia
- Afzelia
- Avodire
- Canafistula
- Canarywood

MIKE LEIGHER: Located in South Carolina, Mike and his brother Brad have a portable sawmill and process a number of turning blanks. Mike has donated a number of samples from domestic, ornamental, and/or naturalized trees. His website features great deals on hard-to-find domestic turning blanks: www.turningblanks.net.

Donations:
- Camphor
- Chinaberry
- Dogwood
- Locust, Honey
- Magnolia, Southern
- Maple, Ambrosia
- Mulberry
- Paulownia
- Poplar, Rainbow
- Sassafras
- Sumac
- Sweetgum

DONATION KEY:
- wood or veneer sample donated
- finished wood object photo
Index

A
Abies 25
 alba 49
 amabilis 49
 balsamea 27, 48
 concolor 49
 grandis 49
 lasiocarpa 49
 magnifica 49
 procera 49
Abura 170
Acacia
cambagei 21
erioloba (see Vachellia)
koa 21, 33, 50
mangium 21, 51
melanoxylon 21
omalophylla 51
Acapu 250
Acer
 macrophyllum 22, 54
 negundo 22, 52
 nigrum 22, 54
 pseudoplatanus 54
 rubrum 22, 54
 saccharinum 54
 saccharum 11, 19, 22, 35, 43, 53
Æsculus 37, 56
 flava 56
 glabra 56
 hippocastanum 57
Afara 237
Afromosia 182
Afzelia 21, 30, 57
 xylocarpa 57
Agathis australis 1, 58
Ailanthus 58
Ailanthus altissima 58
Albizia 21, 59
 ferruginea 59
 julibrissin 59
 lebeck 59
 saman (see Samanea)
Alder
 European 60
 Red 36, 60
Algarrobo Blanco 200
Allergies 45
Allocasuarina 36, 59
Alnus
 glutinosa 60
 rubra 36, 60
Amaranth 181
Amazique 137
Amboyna 205
Amendoim 21, 208
Anadenanthera colubrina 21, 61
Andiroba 80
Angelim rajado 252
Angiosperms 1
 anatomy 29
Anigre 199
Aningeria (see Pouteria)
Anisotropic 9
Annual rings 2
Apitong 117
Apple 162
Apricot 201
Apuleia leiocarpa 61
Araucaria
 angustifolia 62
 araucana 62
 cunninghamii 62
 heterophylla 62
Arborvitae
 Eastern 239
 Giant 240
Arbutus menziesii 63
Arctostaphylos pungens 64
Ash
 Black 131
 Blue 132
 emerald ash borer 130
 European 30, 132
 Green 2, 132
 guide to 132
 Mountain 126
 Olive 132
 Oregon 132
 Pumpkin 132
 Swamp 131
 Tamo 224
 White 130
Aspen
 Bigtooth 198
 European 198
 Quaking 18, 198
Aspidosperma polyneuron 21, 64
Astronium graveolens 21, 65
Atherosperma moschatum 222
Availability 45
Avodire 2, 21, 245
Ayan 119
Azobe 157
B
Baikiea plurijuga 66
Balau 226
Baldcypress 27, 234
Balsa 1, 174
Balsamo 172
Bamboo 38, 67
Bambusa 67
Bark 2
Basswood 10, 36, 242
Bayahonda Blanca 200
Beech
 American 36, 41, 129
 Blue 81
 European 129
 Myrtle 173
Beli 5, 149
Berchemia zeyheri 21, 68
Betula 22
 alleghaniensis 69
 alnoides 70
 lenta 70
 neoealaskana 70
 papyrifera 70
 pendula 70
 pendula var carlica 70
 populifolia 70
 pubescens 70
Birch 22
 Alaska Paper 70
 Alder-Leaf 70
 Baltic 69
 Downy 70
 Gray 70
 Karelian 70
 lookalikes 70
 Masur 69, 70
 Paper 70
 River 70
 Silver 70
 Sweet 70
 Yellow 69
Biseriate 28, 35
Blackwood
 African 105
 Australian 21, 51
 Burmese 107, 196
 Malaysian 114
Bloodwood 3, 21, 74
Board-foot 45
Borassus flabellifer 72
Bocote 97
Bois d’arc 160
Bois de Rose 104
Bookmatch 17
Borghinia fistuloides 71
Bocote 97
Bound water 7
Boxelder 22, 52
Boxwood 76
 Castelo 80
 Box, Yellow 127
Braziliwood 77
Briar 124
Brosimum
 guianense 73
 rubescens 3, 21, 74
Brownheart 250
Bubinga 21, 138
Buckeye 56
Buckthorn 21, 217
Bullettwood 164
Buñesia
 arborea 75
 sarmientoi 75
Butternut 4, 30, 145
Buxus sempervirens 76
C
Cabbagebark, Black 157
Cesalpina
 echinata 77, 78
 paraguariensis 78
 platyloba 78
Callitris columellaris 79
Calocedrus decurrens 79
Calyophyllum
 candidissimum 80
 multiflorum 80
Camatillo 101
Cambium 2
Camelthorn 21, 250
Camphor 93
Canarywood 21, 90
Carapa 80
Cardwellia sublimis 81
Carpinus 36
 betulus 81
 caroliniana 81
Carya
 aquatica 84
 cordiformis 35, 84
 glabra 84
 illinoensis 82
 laciniosa 84
 myristicifolium 84
 ovata 83
 tomentosa 84
Cassia siamea (see Senna)
Castanea
 dentata 85
 mollissima 85
 sativa 85
Casuarina 36, 59
 cunninghamiana 59
Catalpa
 bigoniioides 86
 speciosa 86
Catalpa 86
Cebil 21, 61
Cedar 25
 Alaskan 99
 Aromatic Red 150
 Atlantic White 91
 Australian Red 243
 Eastern Red 19, 28, 150
Cedar (continued)
 Incense 79
 Japanese 98
 Lebanon 1, 2, 88
 Northern White 27, 239
 Pecky 79
 Port Orford 91
 Spanish 87
 Western Red 240
 Yellow 99
Cedrela
 odorata 87
 toona (see Toona ciliata)
Cedrus libani 1, 26, 88
Celtis
 levigata 89
 occidentalis 36, 89
Centrolobium 21, 90
Chakte Kok 227
Chakte Viga 78
Chamaecyparis
 lawsoniana 91
 nootkatensis (see Cupressus)
 thyoides 91
Chechen 21, 95, 166, 167
Cherry
 Black 202
 Brazilian 142
 Patagonian 136
 Sweet 202
Chesnut
 American 85
 Chinese 85
 Sweet 85
 wormy 85
Chinaberry 165
Chlorocardium roebii 21, 92
Chlorophora
 excelsa (see Milicia)
 tintoria (see Maclura)
Chloroxylon swietenia 21, 93
Cinnamomum camphora 93
CITES appendices 46
Citron-wood 238
Cocobolo 16, 108, 229
Cocos nucifera 37, 94
Coffee tree 21, 31, 139
Colophospermum mopane 21, 95
Combretum
 imberbe 95
 schumannii 95
Conifers
 anatomy 25
 Coolbah 127
 cooperage 32
 Cordia 97
 dodecandra 96
Cornus florida 22, 98
Cosmocalyx spectabilis 227
Cottonwood
 Black 198
 Eastern 8, 197
 Cross section 3
 Crushing strength 41
Cryptomeria japonica 21, 98
Cubemertree 161
Cumaru 21, 118
Cupressus
 nootkatensis 99
 × leylandii 100
Curupay 61
Cybistax donnell-smithii
 (see Roseodendron)
Cypress
 Australian 79
 Bald 234
 Leyland 100
 Pecky 234
D
Dacrydium 100
Dalbergia 20, 37, 43
 baronii 104
 cearensis 40, 101
 cochinchninis 102
 congestiflora 101
 cuntrata 107
 decipularis 3, 102
 guide to 111
 latifolia 19, 32, 103
 maritima 104
 melanoxylon 105
 nigra 19, 32, 106
 oliveri 107
 retusa 16, 108
 sissoo 109
 sprucean 3, 109
 stevensonii 33, 110
 tucurensis 111
Deciduous 1
Degame 80
De-glupta 127
Dendritic
 growth form 1
 pore arrangement 31
Dendrocalamus asper 38, 67
Diffuse-porous 30
Diospyros 3, 43
 celebica 112
 crassiflora 18, 113
 ebenum 114
 malabarica 115
 mun 115
 virginiana 37, 116
Dipterocarpus 117
Dipteryx odorata 21, 118
Distemonanthus benthamianus 119
Distribution 40
Dogwood 22, 98
Douglas-fir 25, 63, 203
Douka 241
Doussie 57
Durability 43
Dyera costulata 120
E
Earlywood 2
to latewood transition 26
Ebenopsis ebano 21, 120
Ebony 3, 43, 105
African 113
Black and White 115
Brown 78
Ceylon 114
Gaboon 18, 113, 116
Macassar 112
Mexican 229
Mun 115
Texas 21, 120
White 116
Ekki 157
Elæagnus angustifolia 21, 121
Elasticity 41, 255
Elm 31
American 246
Cedar 248
Dutch elm disease 248
English 248
guide to 248
hard 247
Red 31, 247
Rock 248
Siberian 248
Slippery 247
soft 248
Winged 246
Wych 21, 248
EMC 8
Endgrain 3
magnifying loupe 24
preparation 24
Endiandra palmerstonii 121
Entandrophragma
cylindricum 37, 42, 122
utile 123
Enterolobium cyclocarpum 21, 123
Equilibrium moisture content 8
Erica arborea 124
Erythroxylum havanense 227
Eucalyptus 30
camaldulensis 127
coolabah 127
deglupta 127
diversicolor 127
globulus 124
grandis 127
leucoxylon 127
marginata 30, 125
melliodora 127
obliqua 127
oleosa 127
regnans 126
robruta 127
urograndis 126
Euxylophora parænsis 21, 128
Evergreen 1
Excurrent growth form 1
Extractives 3
leachability 23
F
Face grain 5
Fagus
grandifolia 36, 41, 129
sylvatica 129
Family (taxonomy) 39
Fiber saturation point 7
Fibrovascular bundles 37, 38
Finishes
 evaporative 14
 moisture exclusion 11, 13
 reactive 13
Fir 25
Balsam 27, 48
California Red 49
Douglas 63, 203
European Silver 49
Grand 49
Noble 49
Pacific Silver 49
Subalpine 49
White 49
Flatsawn 4
Floroya (see Mitragyna)
Fluorescence 20
 species list 21
 water extract 111
Foliage 1
Fraxinus
americana 130
excelsior 30, 132
latifolia 132
nigra 131
pennsylvanica 2, 132
profunda 132
quadrandulata 132
Free water 7
FSP 7
Fustic 161
G
Gabon 66
Garapa 61
Genus (taxonomy) 39
Gidgee 21, 51
Gleditsia
aquatica 133
triaconta 9, 21, 133
Gluta 21, 23, 133
Golden Chain 153
Goncalo Alves 21, 65
Gomysylus 34, 134
Grain
 bastard 5
 beeswing 42
cathedral 5
contrast 27
crotch 43
end 3
face 5
fiddleback 18
flame 18
flatsawn 4
interlocked 42
irregular 42
mottle 42
Grain (continued)
 plainsawn 4
 quartersawn 5
 quilted 55
 reading 5
 ribbon stripe 42
 riftsawn 5
 spalted 55
 spider-webbing 96, 104, 106
 spiral 42
 straight 42
 tiger 18
 wavy 42
Greenheart 21, 92
Green (moisture) 7
Grevillea robusta 134
Growth rings 2
Guaiacum 18, 135
Guana-caste 21, 123
Guarea cedrata 136
Gui bourta 21, 138
 ehie 35, 137
 hymenaeifolia 136
Guilandina echinata (see Caesalpinia)
Gum
 Blue 124
 Red 155
 River Red 127
 Rose 127
 Sap 155
 Sweet 155
 Yellow 127
Gymnocladus dioicus 21, 139
H
Hackberry 36, 89
Hallea (see Mitragyna)
Handroanthus 140
Hardwoods 1
 anatomy 29
 parenchyma 33
 Heartwood 3
 Hemlock 25
 Eastern 244
 Western 5, 245
Hevea brasiliensis 40, 141
Hibiscus elatus (see Talipariti)
Hickory
Bitternut 35, 84
Mockernut 84
Nutmeg 84
Pignut 84
Shagbark 83
Shellbark 84
Water 84
Holly 143
Hophornbeam 178
Hormigo 196
Hornbeam 81
Horse Chestnut 57
Hygroscopic 7
Hymenae courbaril 21, 142
I
Idigbo 238
Ilex 143
Imbuia 175
Intsia bijuga 21, 34, 144
Ipe 140
Ipil 144
Iroko 29, 168
Ironwood
 American 178
 Black 21, 152
 Desert 21, 177
Itin 200
IUCN Red List 47
J
Janka hardness 41, 253
Jarrah 30, 125
Jatoba 21, 31, 52, 142
Jelutong 31, 120
Jobillo 65
Juglans cinerea 4, 30, 145
 hindsii 19, 147
 neotropica 19, 148
 nigra 3, 146
 regia 19, 147
Julbernardia pellegriniana 5, 149
Juniper 25
 Alligator 149
 Juniperus 25
deppeana 149
 virginiana 19, 28, 150
Juvenile wood 4
K
Karri 127
Katalox 36, 71, 229
Kauri 1
Kempas 152
Keruing 117
Kevazingo 138
Khaya 151
Kiaat 204
Kingwood 40, 101
Kiri 180
Koa 21, 33, 50
Kokko 59
Koompassia malaccensis 152
Korina 237
Krugiodendron ferreum 21, 152
Kwila 144
L
Laburnum 153
 Laburnum anagyroides 153
 Lacewood 6, 179, 219
 Lagarostrobus 100
 Lagerstroemia 153
 Larch 25
 Western 28, 154
 Larix 25
 larcina 154
 Larix (continued)
 occidentalis 28, 154
 Latwood 2
 transition to 26
 Luan 225
 Laurel, California 249
 Leadwood 95
 Lemonwood 80
 Leopardwood 6, 35, 219
 Letterwood 73
 Libocedrus decurrens (see Calocedrus)
 Lignum Vitae 18, 135
 Argentine 75
 Lilac 231
 Limba 42, 237
 Lime 242
 Linden 242
 Liquidambar styraciflua 155
 Liriodendron tulipifera 156, 161
Locust
 Black 20, 21, 32, 218
 Honey 9, 21, 133
 Water 133
 Lonicocarpus 21, 157
 Lophira alata 157
 Lophozonia 173
 Lovoa trichilioides 158
 Luster 43
 Lyptus 126
 Lysiloma latisiliquum 21, 158
 Mansonia 165
 Mansonia altissima 165
 Manzanita 64
 Maple 18
 ambrosia 55
 Bigleaf 22, 54
 birdseye 55
 Black 22, 54
 burl 55
 chemical testing 22
 curly 55, 159, 227
 Hard 11, 19, 22, 35, 43, 53, 217
 identification 54, 70
 quilted 55
 Red 22, 54
 Rock 53
 Silver 54
 soft 35, 54
 spalted 55
 Sugar 53
 Sycamore 54
 Marblewood 34, 252
 Marmaroxylon racemosum (see Zygia)
 Massandanduba 164
 MC 7
 Melanorrhoea 21, 133
 Melia azedarach 165
 Meranti
 Dark Red 225
 Light Red 226
 White 226
 Yellow 226
 Merbau 21, 34, 144
 Meristems, apical and lateral 2
 Mesquite 21
 African 200
 Black 80, 200
 Honey 199
 Messmate 127
 Metopium brownei 21, 166
 Microberlinia brazzavillensis 167
 Milicia 29, 168
 Millettia laurentii 169
 stuhlmannii 21, 32, 170
 Mimosa 59
 Mitragyna 170
 MOE (Modulus of elasticity) 41, 255
 Moisture content 7
 Monkeypod 21, 50, 221
 Monkey Puzzle 62
 Monocots 37
 Mopane 21, 95
 Morado 159
 MOR (Modulus of rupture) 41, 254
 Morus 20, 171
 tinctoria (see Maclura)
 Movement in service 7
 Movingui 119
 Mozambique 137
 Mulberry 20, 171
Muninga 21, 204
Myroxylon balsamum 21, 172
Myrtle 21, 249
 Crepe 153
 Tasmanian 173

Names
 common 39
 scientific 39
Narr a 21, 35, 206
Nogal 148
Nothofagus cunninghamii 173
Nyatoh 178
Nyssa 173

Oak 6, 19, 22, 36
 Black 213
 Bog 215
 Brown 215
 Bur 211
 California Black 213
 chemical testing 22
 Cherrybark 213
 Chestnut 211
 English 214
 Holm 6
 identification 209
 Laurel 213
 Live 216
 Oregon White 211
 Overcup 211
 Pin 213
 Post 211
 Red 17, 18, 43, 212
 Scarlet 213
 Sessile 211
 Shumard 213
 Southern Red 213
 Swamp Chestnut 211
 Swamp White 211
 Water 213
 White 6, 19, 32, 39, 210
 Willow 213
 Obeche 243
Ochro ma pyramidal e 1, 174
Ocote a
 porosa 175
 rodiei (see Chlorocardium)
Odor 20
Okoume 66
Old growth 46
Olea 21, 176
Olive 21, 176
 East African 176
 Russian 21, 121
Olneya tesota 21, 177
Orange Agate 196
Orientalwood 121
Osage Orange 17, 111, 160
 Argentine 161
 Ostry a virginiana 178
 Ovangkol 35, 137
Ovendry 7
P
Padauk
 African 21, 144, 195, 207, 224
 Andaman 205
 Burma 205
 Paela 78
Palaquium 178
Palm
 Black 37, 72
 Coconut 37, 94
 described 37
 Red 37, 94
 Palo Fierro 177
 Panga Panga 21, 32, 170
Panopsis 6, 179, 219
Parashorea 226
Parenchyma
 aliform 33
 apotracheal 33
 banded 34
 confluent 34
 diffuse-in-aggregates 33
 diffuse (in hardwoods) 33
 diffuse (in softwoods) 28
 lozenge 34
 marginal 34
 paratracheal 33
 reticulate 34
 scalariform 34
 scanty 33
 unilateral 34
 vasicentric 33
 winged 34
 zonate 28
Parota 123
Partridgewood 170, 173, 250
Pau Ferro 159
Paulownia 2, 180
Paulownia tomentosa 2, 180
Payene 178
Pear 208
Pecan 82
Pelogyne 21, 34, 39, 181
Pepperwood 249
Pericopsis elata 182
Pernambuco 77
Peroba Rosa 21, 64
Persimmon 37, 116
Pheasantwood 223
Phoebe porosa (see Ocotea)
Picea 19, 25
 abies 183
 engelmannii 183
 glauca 183
 mariana 183
 rubens 183
 sitchensis 26, 48, 184
Pine 25
 Austrian 193
 Beetle Kill 188
 Caribbean 187
 Chilean 62
 Eastern White 18, 28, 190
 hard 186
 Hoop 62
 Huon 100
 Jack 189
 Jeffrey 189
 Khasi 193
 Limber 191
 Lobolly 187
 Longleaf 188
 Maritime 193
 New Zealand Red 100
 Norfolk Island 62
 Norway 192
 Ocote 193
 Para na 62
 Patula 193
 Pinyon 191
 Pitch 187
 Pond 187
 Ponderosa 5, 12, 26, 189
 Radiata 189
 Red 192
 Sand 187
 Scots 193
 Shortleaf 187
 Slash 185
 soft 191
 Southern Yellow 27, 186
 Spruce 187
 Sugar 27, 191
 Sumatran 193
 Table Mountain 187
 Virginia 187
 Western White 191
 Western Yellow 189
 White Cypress 79
Pink Ivory 21, 68
Pinus 25, 27
 banksiana 189
 caribae a 187
 clausa 187
 contorta 188
 echinata 187
 edulis 191
 elliottii 185
 flexilis 191
 glabra 187
 jeffreyi 189
 kesiya 193
 lambertiana 27, 191
 merkusii 193
 monticola 191
 nigra 193
 oocarpa 193
 palustris 187
 patula 193
 pina ster 193
 ponderosa 5, 12, 26, 189
 pungens 187
 radiata 189
 resinos a 192
Pinus (continued)
 rigida 187
 serotina 187
 strobus 18, 28, 190
 sylvestris 193
 taeda 187
 virginiana 187
Piptadenia 21, 194
Piratinera guianense (see Brosimum)
Pistacia vera 21, 194
Pistachio 21, 194
Pistacia vera 21, 194
Pith 3
Pithecellobium saman (see Samanea)
Plainsawn 4
Plane, London 195
Plantation Hardwood 141
Platanus
 occidentalis 6, 195
 × acerifolia 195
Platymiscium 196
Plum 11, 201
Poisonwood, Black 166
Poplar 156
 Balsam 198
 Rainbow 156
 Tulip 156
 White 198
 Yellow 156, 161
Populus
 alba 198
 balsamifera 198
 deltoides 8, 197
 grandidentata 198
 tremula 198
 tremuloides 18, 198
 trichocarpa 198
Pores
 arrangement 30
 chains 30
 clusters 30
 contents 32
 dendritic 31
 diagonal/radial 30
 diffuse-porous 30
 frequency 32
 radial multiples 30
 ring-porous 29
 semi-ring-porous 30
 size 31
 solitary 30
 ulmiform 31
Pouteria 199
Pricing 45
Primavera 219
Princess’ Tree 180
Prosopis 21
 africana 200
 alba 200
 glandulosa 199
 juliflora 200
 kuntzei 200
 nigra 200
Provenance 15
Prunus
 armeniaca 201
 avium 202
 domestica 11, 201
 serotina 6, 202
Pseudotsuga
 menziesii 63
Pseudotsuga menziesii 25, 203
Pterocarpus
 angolensis 21, 204
 dalbergioides 205
 indicus 21, 35, 42, 205, 206
 macrocarpus 205
 soyauxii 21, 207
Pterogyne nitens 21, 208
Purpleheart 21, 34, 39, 181
Pyinma 153
Pyrus communis 208
Q
Quartersawn 4
advantages of 5
Quebracho 21, 223
Quercus
 alba 6, 19, 32, 210
 bicolor 211
 coccinea 213
 falcata 213
 garryana 211
 ilex 6
 kelloggii 213
 laurifolia 16, 213
 lyrata 211
 macrocarpa 211
 mackayi 211
 nigra 213
 pagoda 213
 palustris 213
 petraea 211
 phellos 213
 primus 211
 robur 214, 215
 rubra 17, 18, 43, 212
 shumardii 213
 stellata 211
 velutina 213
 virginiana 216
R
Radial surface 4
shrinkage 10
Raintree 221
Ramin 34, 134
Rays 6
 aggregate 36
 fleck 6
 fusiform 25
 in hardwoods 35
 in softwoods 28
 noded 36
 spacing 35
 storied 36
 width 35
Reagent 22
Redgum 155
Redheart 21, 227
Redwood 2, 28, 224
Relative humidity 7
Rengas 21, 133
Resin canals 25
 fusiform rays 25
RH 7
Rhamnus 21, 31, 217
 zeyheri (see Berchemia)
Rhus typhina 21, 217
Riftsawn 5
Rimu 100
Ring-porous 29
Ripple marks 37
Robinia pseudoacacia 20, 21, 32, 218
Roseodendron donnell-smithii 219
Rosewood 20, 37
 Amazon 3, 109
 Bolivian 159
 Borneo 133
 Brazilian 19, 32, 106
 Burmese 107
 Caribbean 166
 East Indian 19, 32, 103
 guide to 111
 Guyana 228
 Honduran 33, 110
 Khamphi 107
 Laos 107
 Madagascar 104
 Panama 111
 Patagonian 61
 Santos 159
 Siamese 102
 Tiete 136
 Yucatan 111
Rotary-slice 6, 17
Rot resistance 43
Roupala montana 6, 35, 219
Rubberwood 40, 141
S
Salix nigra 220
Samanea saman 21, 50, 221
Sapele 37, 42, 122
Sapgum 155
Sapodilla 164
Sapwood 3
 demarcation 3
Sassafras 222
Sassafras albidum 222
Satine 74
Satinwood
 Asian 153
 Brazilian 128
 Ceylon 21, 93
 Nigerian 119
 West Indian 93
Schinopsis 21, 223
 Semi-ring-porous 30
Senna siamea 223
Sensitizer 45
Sequoia sempervirens 2, 28, 224
Seraya, White 226
Shedua 137
Sheesham 109
Shellac
moisture exclusion of 13
recipe 14
Sheoak 36, 59, 119
River 59
Shittim 250
Shorea 225, 226
Shrinkage
longitudinal 10
volumetric 10
Silky Oak
Northern 81
Southern 134
Simira salvadorensis 21, 227
Sipo 123
Sirari 136
Sissoo 109
Snakewood 73, 251
Softwoods 1
anatomy 25
eyewood transition 26
grain evenness 27
parenchyma 28
texture 26
Species (taxonomy) 39
Specific gravity 40
Spirostachys africana 228
Springwood 2
Spruce 19, 25
Black 183
Engelmann 183
lookalikes 183
Norway 183
Red 183
Sitka 26, 48, 184
White 183
Sugarberry 89
Sugi 21, 98
Sumac, Staghorn 21, 217
Summerwood 2
Sustainability 46
Swartzia 71
benthamiana 228
cubensis 36, 71, 229
fistuloides (see Bobgunnia)
madagascariensis (see Bobgunnia)
Sweetbay 161
Sweetgum 155
Swietenia
macrophylla 37, 40, 230
mahogani 231
Sycamore 6, 36, 195
Synonym 40
Syringa vulgaris 231
T
Tabebuia (see Handroanthus)
donnell-smithii (see Roseodendron)
Talipariti elatum 232
Tamarack 154
Tamarind 233
Tamarindus indica 233
Tambootie 228
Tanga Tanga 59
Tangential surface 4
shrinkage 10
Taxodium distichum 1, 27, 234
Taxus 1, 25, 45, 235
Teak 236
Brazilian 118
Burmese 236
Rhodesian 66
Tectona grandis 236
terminalia
ivorensis 238
superba 42, 237
Tetraclinis articulata 238
Texture 43
Thuya
occidentalis 27, 239
plicata 240
Thuja
Thyine 238
Tigheome felleckii 241
Tigre Caspi 251
Tilia
americana 10, 242
× europaea 242
Timborana 21, 194
Tineo 73, 251
toona ciliata 243
Toxicity 45
Tracheids 26
Transverse section 3
tree of Heaven 58
Triplochiton scleroxylon 243
T/R ratio 10
Tsuga 25
canadensis 244
heterophylla 5, 245
mertensiana 245
Tulipwood
American 156
Brazilian 3, 102
Tupelo 173
Turraeanthus africanus 2, 21, 245
Tyloses 32
Tzalam 21, 158
U
Ulmus 31
alata 246
americana 246
cassifolia 248
glabra 21, 248
procera 248
pumila 248
rubra 31, 247
thomasi 248
Umbellularia californica 21, 249
Untiserate 28, 35
Utile 123
V
Vachellia erioloba 21, 250
Vavona 224
Verawood 75, 229
Vermillion 205
Vertical grain 4
Vessel elements 29
Vouacapoua americana 250
W
Walnut
African 158
Black 3, 146
Brazilian 140, 175
Caribbean 158
Circassian 147
Claro 19, 89, 147
English 19, 147
French 147
Peruvian 19, 78, 148
Queensland 121
Tropical 148
White 145
Wamara 228
Wattle, Black 51
Weathering 43
Weinmannia trichosperma 251
Wenge 169
Willow 220
Wood identification
chemical testing 22
color 17
grain 18
history 19
limitations 15
odor 20
weight/hardness 18
Workability 44
Y
Yarran 51
Yellowheart 21, 74, 128, 142, 252
Yew 1, 25, 45, 235
Z
Zanthoxylum flavum 93
Zapote, Chico 164
Zebroux 167
Zebrawood 167
Ziricote 96
Zygia
cataractae 251
racemosa 34, 252