

IDENTIFYING AND USING HUNDREDS OF WOODS WORLDWIDE

ERIC MEIER

Table of Contents

ONE | Foundations: What is Wood?

HARDWOODS AND SOFTWOODS | TREE GROWTH | SAPWOOD AND HEARTWOOD PLANES OR SURFACES OF WOOD | GRAIN APPEARANCE | RAYS

7 TWO | Building on Basics: Wood and Moisture

DIMENSIONAL SHRINKAGE | WOOD FINISHES AND MOISTURE FINISHING OILY OR RESINOUS WOODS

15 THREE | A Closer Look: Identifying Wood

GREAT EXPECTATIONS | FILL IN THE BLANK, OR MULTIPLE CHOICE?

DEDUCTIVE WOOD IDENTIFICATION

25 FOUR | Under the Lens: Softwood Anatomy

RESIN CANALS | TRACHEIDS | EARLY WOOD TO LATEWOOD TRANSITION
GRAIN CONTRAST | PARENCHYMA | RAYS

29 FIVE | Under the Lens: Hardwood Anatomy

VESSEL ELEMENTS | PARENCHYMA | RAYS | WOOD FIBERS | MONOCOTS: A SPECIAL CASE

39 SIX | A Kaleidoscope: The Wood Profiles

PROFILE FIELDS EXPLAINED | WOOD PROFILES

253 Appendices and Back Matter

APPENDIX A: JANKA HARDNESS MASTERLIST | APPENDIX B: MODULUS OF RUPTURE MASTERLIST APPENDIX C: MODULUS OF ELASTICITY MASTERLIST | BIBLIOGRAPHY | ACKNOWLEDGMENTS | INDEX

A Brief Introduction: From the Author

When it comes to those who work with wood, there seems to be generally two classes of people: scientists and craftsmen. This book was written for the latter.

What I have found in my own personal observation of those that work with wood is that the first class of people, the scientists, are almost drowning in knowledge. Yet the craftsmen, through no particular fault of their own, are suffering in a relative dearth of solid facts and scientific understanding.

Books on the subject of wood usage and identification have all come from one of two very opposite poles. Either there have been craft-oriented books filled with pretty pictures, but with very weak or vague and impractical statements, such as "this wood is strong, hard, and moderately stable," or else there have been thinly-veiled scientific books, burying the uninitiated in grainy, black-and-white microscope images and confusing terminology.

As I began researching and writing this book, many questions began circling in my head. "Can't a book exist that features both vivid and accurate pictures, and also solid, usable facts and information on wood species? What's practically applicable to the realm of woodworking and related trades, and what should be left to the fastidious and exacting eyes of scientists?"

In the midst of these myriad questions, I was debating whether or not to get a microscope and delve into the world of microscopic wood identification. Here I was, probably one of the biggest wood "nuts" around, utterly fascinated by the many types and varieties of wood, when I had an epiphany. "If I personally don't have any desire to buy and learn to use a microscope to help identify wood, then why in the world would I

ever expect anyone else to either?"

At that point, a line had been drawn in the sand. I determined that as I made an effort to learn (and thereafter teach others) about scientific wood data and identification, I didn't need to consult with the "other side" to see what would be most helpful to them: I was the other side! I realized that I was a woodworker, and not a scientist—and for my purposes, that was not necessarily a bad thing.

A friend of mine who works in Bible translation once told me that in order for a translation to be optimally readable and usable for native peoples, it ultimately must be written by someone whose mother tongue is in the native language, or else it will seem awkward, foreign, and inarticulate.

I am of the opinion that a very similar phenomenon happens whenever any attempt is made from the scientific community to condescend and "write down" to craftspeople: the information trying to be relayed is very good and useful, but it's spoken from an entirely different background and mindset, and is almost completely lost in translation.

It's therefore my hope and intention with this book to act as an interpreter in a way, and to traverse the vast and somewhat intimidating territory of scientific wood knowledge, and open a fresh pipeline of practical insight for those who stand to most directly benefit from it: woodworkers.

In our "laboratory," you'll find no clean white smocks or stuffy collars. Come on in, shake the sawdust from your hair, brush off those wood chips from your shoulders, and take a moment to learn a bit more about the material that's probably right under your nose: WOOD!

Ein Min

I Foundations: What is Wood?

It's common knowledge that wood comes from trees. What may not be so apparent is the structure of the wood itself, and the individual elements that make up any given piece of lumber. Unlike a mostly homogenous piece of polystyrene, MDF, or other man-made material, wood is an organic material, and has many distinct characteristics which will be helpful to learn.

HARDWOODS AND SOFTWOODS

An immediate and broad distinction that can be made between types of trees (and wood) is the label of **hardwood** or **softwood**. This is somewhat of a misnomer, as the label is actually just a separation between **angiosperms** (flowering plants such as maple, oak, or rosewood), and **conifers** (cone-bearing trees such as pine, spruce, or fir).

Hardwoods (angiosperms) have broad-leaved foliage, and tend to be **deciduous**—that is, they lose their leaves in the autumn. (However, many tropical hardwood species exist which are **evergreen**—they maintain their leaves year-round.) Additionally, hardwood trees tend to have a branched or divided trunk, referred to as a **dendritic form.**

Softwoods (conifers) tend to have needle or scalelike foliage, though in some uncommon instances, they can have rather broad, flat leaves, such as Kauri (Agathis australis). Most softwood trees are evergreen, however, a few conifers, such as Bald-cypress (Taxodium distichum), lose their foliage in the autumn, hence the "bald" prefix in the common name.

Softwoods tend to have a single, dominant, straight trunk with smaller side branches, referred to as an **excurrent form**—this cone-shaped growth form helps trees in temperate climates shed snow. Again, there are several conifers that are an exception to this growth form, such as Cedar of Lebanon (*Cedrus libani*).

The confusion in labels arises in that the wood of angiosperms is not always hard—a glaring example is Balsa (*Ochroma pyramidale*), which is technically classified as a hardwood. Conversely, the wood of conifers is not necessarily always soft—an example of a relatively hard softwood would be Yew (*Taxus* spp.). However, as a rule of thumb, hardwoods are of course generally harder than softwoods, and the label is still useful to distinguish between two broad groups of trees and certain characteristics of their wood.

The spruce tree pictured to the left is a good representation of a conifer with evergreen, needle-like foliage and a single, dominant trunk. Their long, straight trunks and lightweight timber make softwoods well-suited for structural building purposes. On the right is an oak tree—with a branching form, and leaves that drop seasonally—which is characteristic of most angiosperms. Their higher density and rich heartwood colors make hardwoods well-suited for furniture and decorative woodwork.

In this cross section of Green Ash (Fraxinus pennsylvanica), the sapwood section is disproportionately wider than most hardwood species. In some tree species, the sapwood is less than one inch thick, with the remaining trunk being composed of heartwood. Ash (Fraxinus spp.), along with maple (Acer spp.), birch (Betula spp.), and a handful of other woods, are utilized mainly for their wide, lightcolored sapwood. Conversely, the darker heartwood is normally the commercially valuable part of the tree, as in domestic species such as Black Walnut (Juglans nigra) and Black Cherry (Prunus serotina).

TREE GROWTH

When considering a tree's growth—whether a tiny sapling, or a one-thousand-year-old giant—there are many features that are common to all species. Besides the basics of the roots, the main stem (trunk), and the

Note the much wider earlywood zone in softwoods such as the Redwood (Sequoia sempervirens), pictured on the left $(10\times)$, as compared to hardwoods like Paulownia (Paulownia tomentosa), on the right. When a tree grows slower than average (perhaps due to an unfavorable growing site), both the earlywood and latewood zones become proportionately condensed. This difference explains why slower growing softwoods tend to be stronger (the weaker earlywood zones are narrower), while slower growing ring-porous woods like oak or ash tend to be weaker (the stronger latewood zones are narrower).

leaves and branches, there are growing points at the tips of the stems and roots, called **apical meristems**. These growing points, through cell division, are responsible for the *vertical* growth in trees.

Additionally, sandwiched between the bark and the inner wood is a thin layer or sheath called the **lateral meristem** or **vascular cambium**—usually referred to simply as the *cambium*. This tiny, seemingly magical layer is responsible for practically all of the *horizontal* growth on a tree. The cambium consists of reproductive cells that, by cell division, forms new bark outward, and new wood inward.

It is the seasonal growing activity of the cambium that is responsible for the formation of **growth rings** seen in wood. In temperate zones, the cambium is most active in the spring—this wood is sometimes referred to as **springwood** or **earlywood**, with growth slowing in the summer (called **summerwood** or **latewood**), and completely ceasing in the winter. These differences in growing cycles from year to year form **annual rings**, which are a reasonably accurate indicator of a tree's age.

In tropical zones, where temperature and seasonal variations are minimal, wood can completely lack

At left is a 10× endgrain view of Avodire (*Turræanthus africanus*), a tropical African hardwood species. Note the overall lack of discernible growth rings or earlywood and latewood zones.

discernible rings, or they may correspond with various rainy seasons, and thus are more safely referred to as *growth* rings, and not strictly as *annual* rings.

SAPWOOD AND HEARTWOOD

As the cambium forms new wood cells, they develop into different sizes, shapes, and orientations to perform a variety of tasks, including food storage, sap conduction, trunk strength, etc. When a tree is young, certain cells within the wood are alive and capable of conducting sap or storing nutrients—this wood is referred to as **sapwood**.

After a period of years (the number can greatly vary between species of trees), the tree no longer needs the entire trunk to conduct sap, and the cells in the central part of the stem, beginning at the core (called the **pith**), begin to die. This dead wood which forms at the center of the trunk is thus called **heartwood**.

The transition from sapwood to heartwood is accompanied by the accumulation of various deposits and substances, commonly referred to as **extractives**.

Most notably, these extractives are responsible for giving the heartwood its characteristic color: the jet-black color of ebonies (*Diospyros* spp.), the ruby-red of Bloodwood (*Brosimum rubescens*), and the chocolate-brown of Black Walnut (*Juglans nigra*)—each owe their vivid hues to their respective heartwood extractives. Without extractives, the sapwood of nearly all species of wood is a pale color, usually ranging from white to a straw-yellow or gray color.

But heartwood extractives are responsible for more than just color: extractives increase (to varying degrees)

Heartwood extractives, like those found in this sample of Tulipwood (*Dalbergia decipularis*), provide a cornucopia of colors and unique wood properties. (10×)

the heartwood's resistance to rot and decay, and give it added stability and hardness. (Sapwood has virtually no resistance to decay.) From a biological standpoint, it's easy to see the benefits that heartwood brings to the tree as it grows taller and broader. Incidentally, many of these same benefits translate into advantages for woodworkers as well.

However, it should be noted that the transition area from sapwood to heartwood, commonly referred to as **sapwood demarcation**, can vary from gradual to very abrupt: this can be important in wood projects where decay resistance is needed. A clear line of demarcation helps prevent the inadvertent inclusion of sapwood, and minimizes the risk of subsequent rotting or structural damage.

Notice the very subtle transition from sapwood to heartwood on the upper sample of Black Walnut (*Juglans nigra*) as compared with the very sharp line of demarcation on Amazon Rosewood (*Dalbergia spruceana*) on the bottom.

PLANES OR SURFACES OF WOOD

When discussing processed wood and lumber, it's necessary to understand which surface of the wood is being referred to. Working within the scope of the growth rings and their orientation within the tree's trunk, there are three primary planes, or surfaces, that are encountered in processed wood.

The first wood surface is the **endgrain** (which is by far the most useful plane for wood identification purposes). This surface is sometimes referred to as the **transverse surface**, or the **cross section**. This plane is mostly self-explanatory: in processed lumber, it's the section where a board is typically viewed on its end, and circular growth rings may be clearly observed. For the sake of simplicity and clarity, all references in this book will refer to this wood plane as simply the *endgrain*.

This sample of Butternut (*Juglans cinerea*) models the three wood surfaces well. Note the straight and consistent grain pattern shown on the quartersawn surface as compared to the relatively wild flatsawn surface.

The second primary wood plane is the **radial surface**. (Think of the word *radiate*: this wood surface radiates out from the center of the log like spokes on a wheel, and crosses the growth rings at a more-or-less 90° angle.) This surface goes by a number of names, and is sometimes called **vertical grain**, or the **quartersawn section**.

The reason for such naming is that when sawing a log, it may be sawn into quarters along the length of the log, forming four long, triangular, wedge-shaped pieces. Next, boards are sawn from each wedge on alternating sides, resulting in boards which (when viewed from the endgrain) have growth rings that are perpendicular to the face and run vertically.

Again, for simplicity and clarity, most references in this book will refer to this wood plane as the *quarter-sawn surface*. This is perhaps not the standard scientific terminology used, but it's the most common description used among sawyers and woodworkers.

The third and final surface is the **tangential surface**. (Think of the word *tangent*: the wood surface is more or less on a tangent with the growth rings.) This plane is sometimes called the **flatsawn** or **plainsawn surface**.

The reason for such naming comes again from the process of sawing the log. The normal or "plain" method of sawing a log is to cut straight through in a repetitious sequence, leaving the log flat throughout the entire process. (This is also sometimes called through-and-through sawing.) Most subsequent references in this book will refer to this wood plane as the *flatsawn surface*.

Two methods to saw a log: on the left is an example of a quarter-sawing sequence. The log is first cut into quarters, and then each quarter is cut on alternating sides to keep the grain as close to vertical as possible, though the grain of the last few smallest boards aren't perfectly vertical. On the right is an example of flat-

sawing or plain-sawing. This method produces the least amount of waste and the widest possible boards. Portions of the middle few boards would be nearly quartersawn, though the pith and first few growth rings in the center (called **juvenile wood**) are very unstable.

GRAIN APPEARANCE

Although quartersawn and flatsawn surfaces are named after their original method of sawing, in practice, the terms typically just refer to the angle of the growth rings on a piece of processed lumber, with anything approaching 90° being referred to as quartersawn, and anything near 0° generally considered as flatsawn, regardless of how the log was actually milled.

There's sometimes an intermediate angle commonly called **riftsawn** or **bastard grain**, which corresponds with growth rings angled between approximately 30° to 60°. Although it's called riftsawn, sawyers today will rarely, if ever, specifically saw up a log in order to get such an angle—usually the name merely serves as a convenient term to describe wood that is not perfectly quartersawn.

Additionally, the term **face grain** usually denotes the most predominant/widest plane on any given piece of lumber (excluding the endgrain), and does not refer to any specific cut. By observing the angle of the growth rings—as when looking at a stack of boards where only

the endgrain is visible—a reasonably accurate prediction of the appearance of the face of the board can be made. Likewise, in many instances where only the face grain of a board is visible, the endgrain may be extrapolated by "reading" the grain pattern. Each grain cut has varying strengths and weakness, and is used in different applications.

Quartersawn boards are very uniform in appearance and are good for long runs of flooring where the boards need to be butted end-to-end with minimal disruption in appearance. Quartersawing also produces the stablest boards with the least tendency to cup or warp with changes in humidity, which is very useful in many applications, such as for the rails and stiles of raised panel doors. However, because of the extra handling involved with processing the log, and the higher waste factor, quartersawn lumber tends to be more expensive than flatsawn lumber.

Most would agree that flatsawn boards—with their characteristic dome-shaped **cathedral grain**—tend to yield the most visually striking patterns (and it

Reading the grain: note the appearance of the face grain of these three boards, as well as their corresponding endgrain surfaces beneath. On the left, Beli (*Julbernardia pellegriniana*) is almost perfectly quartersawn, resulting in a straight, narrowly spaced, and uniform grain pattern. In the middle, Ponderosa Pine (*Pinus ponderosa*) is flatsawn, resulting in a

characteristic "cathedral" grain pattern. On the right, Western Hemlock (*Tsuga heterophylla*) has a section on the left that is flatsawn, grading down to riftsawn, as reflected on the face of the board, which appears flatsawn on the wild portion on the left, and closer to quartersawn on the straighter and more uniform portion on the right.

should come as no surprise that many veneers are also rotary-sliced from logs to reproduce this appearance). Flatsawn boards are also available in wider dimensions than quartersawn stock, and are well-suited to applications such as raised or floating panels, or other areas where width or appearance are important.

Riftsawn wood lies somewhere between these two aforementioned types. It has a uniform appearance that is very similar to quartersawn wood—and it's nearly as stable too. On large square posts, such as those used for table legs, riftsawn wood has the added benefit of appearing roughly the same on all four sides (since the growth rings on each of the surfaces are all at approximately 45° angles to the face), whereas quartersawn squares would have two sides that display flatsawn grain, and two with quartersawn grain.

RAYS

A discussion on quartersawn and riftsawn lumber would not be complete without mentioning the most significant visual distinction between the two: presence (or absence) of **rays**—or perhaps more accurately, the *conspicuous presence* of rays on the face of the board, known commonly as **ray fleck**, or **ray flakes**.

Note the lighter colored rays radiating out from the pith in this sample of Holm Oak (*Quercus ilex*). Ray fleck is only apparent in areas on the face of the board that are nearly perfectly quartersawn, with the flat and rift sawn areas on the left two thirds obscuring the rays under a lower profile.

In the same way that quartersawn surfaces radiate out from the center of the log (hence the term *radial* surface), rays are also oriented in the same direction; for this reason, although rays are always technically present in the wood, they become most visible and pronounced on quartersawn surfaces. (Additionally, end-grain drying checks also tend to occur along the rays.)

The rays seen in this $1 \times$ endgrain view of Lacewood (*Panopsis spp.*) are so large and prevalent, they could easily be mistaken for growth rings.

But even though virtually all woods have rays, only species with wide, conspicuous rays will produce dramatic ray fleck on the quartersawn surface. Perhaps the largest rays are found on woods like Leopardwood (Roupala montana) and Lacewood (Panopsis spp.), so named for the superb ray fleck seen on their quartersawn surfaces.

Domestic woods like oak (*Quercus* spp.) and sycamore (*Platanus* spp.) also have easily observable rays. Other woods have more modest ray fleck, such as cherry (*Prunus* spp.) or elm (*Ulmus* spp.). Many other species, such as ash (*Fraxinus* spp.), walnut (*Juglans* spp.), and chestnut (*Castanea* spp.), as well as most softwoods, lack visible ray fleck patterns.

It should be noted that ray fleck is not always greeted with enthusiasm: the very same feature that may entice a person to purchase quartersawn oak may also repel another away. In some instances—such as for hardwood floors where a subdued or consistent grain pattern may be desired—ray fleck may be viewed as objectionable or distracting. For this reason, riftsawn woods, most commonly White Oak (*Quercus alba*), are occasionally offered as a means to reap the benefits of uniformity and stability of quartersawn lumber without the sometimes distracting rays.

Puilding on Basics: Wood and Moisture

Perhaps the most important aspect of woodworking deals with the relationship between wood and moisture. The most skilled builder may plane, chisel, or otherwise finesse a wood project into a flawless work, but if wood moisture is ignored, all will be for naught. Joints will pop loose, wide glued-up panels will warp or split, and flooring planks will retract and reveal unsightly gaps (or expand and buckle).

A fundamental fact is that wood is **hygroscopic**. This means that wood, almost like a sponge, will gain or lose moisture from the air based upon the conditions of the surrounding environment. But not only does wood gain or lose moisture, but it will also *expand or contract* according to its moisture level. It's this swelling and shrinking in finished wood products, often referred to

The panel of this old church door has a split. The door is located next to a radiator, exposing the wood to extremely low humidity levels, which more than likely caused the panel to contract and eventually split.

as the wood's **movement in service**, that's responsible for so much mischief and so many malfunctions in woodworking.

When a tree is first felled, it's considered to be in the **green** state, denoting its maximum moisture level. This moisture exists in two different forms: as **free water** that's contained as liquid in the pores or vessels of the wood itself, and as **bound water** that's trapped within the cell walls.

Once a fresh log or piece of lumber is cut and exposed to the air, it will immediately begin losing free water. At this point, the wood does not yet contract or otherwise change in dimension since the fibers are still completely saturated with bound water. Once all the free water has been lost, the wood will reach what is called the **fiber saturation point**, or simply **FSP**.

Below the FSP, the wood will then begin to lose moisture in the form of bound water, and an accompanying reduction in the wood's physical volume will occur. In a practical sense, the wood at this point is now considered to be in a state of *drying*.

During drying, not all of the bound moisture will be lost: just how much water is lost will ultimately depend upon the temperature and relative humidity (RH) of the surrounding air. At 100% RH, no bound water will be lost. At 0% RH, all the bound water in the wood will be lost, a condition known as **ovendry** (so-called because a kiln or oven is typically required to completely drive out all moisture).

The amount of water in a given piece of wood is expressed as a percentage of the weight of the water as compared to its ovendry weight. Some species of trees, when they are initially felled, may contain more water by weight than actual wood fiber, resulting in a **moisture content** (MC) over 100%.

Yellow Birch

Betula alleghaniensis

DISTRIBUTION: Northeastern North America

TREE SIZE: 65-100 ft (20-30 m) tall,

2–3 ft (.6–1 m) trunk diameter

AVERAGE DRIED WEIGHT: 43 lbs/ft³ (690 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .55, .69

JANKA HARDNESS: 1,260 lb_f (5,610 N)

MODULUS OF RUPTURE: $16,600 lb_f/in^2$ (114.5 MPa)

ELASTIC MODULUS: 2,010,000 lb_f/in^2 (13.86 GPa)

CRUSHING STRENGTH: 8,170 lb_f/in² (56.3 MPa)

SHRINKAGE: Radial: 7.3%, Tangential: 9.5%, Volumetric: 16.8%, T/R Ratio: 1.3

COLOR/APPEARANCE: Heartwood is light reddish brown, with nearly white sapwood. Occasionally figured pieces are seen with a wide, shallow curl similar to the curl found in Black Cherry (*Prunus serotina*). There is very little color distinction between annual growth rings, giving birch a somewhat dull, uniform appearance.

GRAIN/TEXTURE: Grain is generally straight or slightly wavy; fine, even texture with low natural luster.

ROT RESISTANCE: Rated as PERISHABLE; poor insect/borer resistance.

ENDGRAIN (10×)

Porosity:

diffuse-porous

Arrangement:

mostly radial multiples

Vessels: small to medium, numerous

Parenchyma:

marginal, and sometimes diffusein-aggregates

Rays: narrow, fairly close spacing

Odor: none

Notes: individual *Betula* species cannot be reliably separated

WORKABILITY: Generally easy to work with hand and machine tools, though boards with wild grain can cause tearout during planing. Turns, glues, and finishes well.

ALLERGIES/TOXICITY: Birch in the *Betula* genus has been reported as a sensitizer; can cause skin and respiratory irritation.

PRICING/AVAILABILITY: Very common as plywood; also available in board form. Prices are moderate for a domestic hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

COMMON USES: Plywood, boxes, crates, turned objects, interior trim, and other small specialty wood items.

COMMENTS: Frequently used worldwide for veneer and plywood. One of the highest grades of plywood—with no inner softwood plies as fillers—

is referred to as Baltic Birch. It's technically not a particular species, but is a general designation of plywood from Russia and nearby Baltic states such as Finland. The plies in these higher grades are thinner and more numerous, imparting greater stiffness and stability.

Masur Birch vase by Steve Earis

Masur Birch is not a particular species of birch, but is rather a grain figure that is most commonly seen in Downy Birch (Betula pubescens) and Silver Birch (Betula

Masur Birch

Betula pendula var. carelica

pendula). It's also sometimes known as Karelian Birch—with Karelia being a region between Finland and Russia where the figured wood is sometimes found.

Once surmised to have been caused by the boring larvae of a certain beetle, Masur Birch has been shown to be hereditary,* classifying the name of the variant as *Betula pendula var. carelica*. Regardless of the exact cause, the resulting figure and appearance is very similar to burl wood or birdseye maple, though of a different origin.

LOOKALIKES: Maple (*Acer* spp.) and birch may be distinguished by comparing the size of their pores in relation to the rays (when observed from the endgrain). In maple, the widest rays are about the same width as the pores, while in birch the rays are noticeably narrower than the pores.

^{*}Risto Hagqvist, Curly Birch (Betula pendula var. carelica) and its Management in Finland, (Karkkilantie: Finnish Forest Research Institute, 2007).

RELATED SPECIES	AVERAGE DRIED WEIGHT	JANKA HARDNESS	MODULUS OF RUPTURE	ELASTIC MODULUS	CRUSHING STRENGTH	SHRINKAGE
Alder-Leaf Birch Betula alnoides	33 lbs/ft ³ (530 kg/m ³)	830 lb _f (3,690 N)	8,980 lb _f /in ² (61.9 MPa)	1,235,000 lb _f /in ² (8.52 GPa)	6,400 lb _f /in ² (44.1 MPa)	Radial–5% Tangential–7% Volumetric–13% T/R Ratio–1.4
Sweet Birch Betula lenta	46 lbs/ft ³ (735 kg/m ³)	1,470 lb _f (6,540 N)	16,900 lb _f /in ² (116.6 MPa)	2,170,000 lb _f /in ² (11.59 GPa)	8,540 lb _f /in ² (58.9 MPa)	Radial-6.5% Tangential-9.0% Volumetric-15.6% T/R Ratio-1.4
Alaska Paper Birch Betula neoalaskana	38 lbs/ft ³ (610 kg/m ³)	830 lb _f (3,690 N)	13,600 lb _f /in ² (93.8 MPa)	1,900,000 lb _f /in ² (13.10 GPa)	7,450 lb _f /in ² (51.4 MPa)	Radial-6.5% Tangential-9.9% Volumetric-16.7% T/R Ratio-1.5
River Birch Betula nigra	37 lbs/ft ³ (590 kg/m ³)	970 lb _f (4,320 N)* *estimated	13,100 lb _f /in ² (90.3 MPa)	1,580,000 lb _f /in ² (10.90 GPa)	No data available	Radial-4.7% Tangential-9.2% Volumetric-13.5% T/R Ratio-2.0
Paper Birch Betula papyrifera	38 lbs/ft ³ (610 kg/m ³)	910 lb _f (4,050 N)	12,300 lb _f /in ² (84.8 MPa)	1,590,000 lb _f /in ² (10.97 GPa)	5,690 lb _f /in ² (39.2 MPa)	Radial-6.3% Tangential-8.6% Volumetric-16.2% T/R Ratio-1.4
Silver Birch Betula pendula	40 lbs/ft ³ (640 kg/m ³)	1,210 lb _f (5,360 N)	16,570 lb _f /in ² 114.3 MPa)	2,024,000 lb _f /in ² (13.96 GPa)	No data available	No data available
Gray Birch Betula populifolia	35 lbs/ft ³ (560 kg/m ³)	760 lb _f (3,380 N)	9,800 lb _f /in ² (67.6 MPa)	1,150,000 lb _f /in ² (7.93 GPa)	4,870 lb _f /in ² (33.6 MPa)	Radial–5.2% Tangential–9.5% Volumetric–14.7% T/R Ratio–1.8

African Padauk

Pterocarpus soyauxii

DISTRIBUTION: Central and tropical west Africa

TREE SIZE: 100-130 ft (30-40 m) tall,

2–4 ft (.6–1.2 m) trunk diameter

AVERAGE DRIED WEIGHT: $47 \text{ lbs/ft}^3 (745 \text{ kg/m}^3)$

SPECIFIC GRAVITY (BASIC, 12% MC): .61, .75

JANKA HARDNESS: $1,970 lb_f (8,760 N)$

MODULUS OF RUPTURE: 16,830 lb_f/in^2 (116.0 MPa)

ELASTIC MODULUS: 1,700,000 lb_f/in^2 (11.72 GPa)

CRUSHING STRENGTH: 8,130 lb_f/in² (56.0 MPa)

SHRINKAGE: Radial: 3.3%, Tangential: 5.2%,

Volumetric: 7.6%, T/R Ratio: 1.6

COLOR/APPEARANCE: Heartwood ranges from pinkish orange to deep brownish red. Most pieces tend to start reddish orange when freshly cut, darkening substantially over time to a reddish brown (some lighter-colored pieces age to a grayish brown).

GRAIN/TEXTURE: Grain is usually straight, but can sometimes be interlocked; coarse, open texture with good natural luster.

ENDGRAIN (10×)

Porosity:

diffuse-porous

Arrangement: solitary and radial multiples

Vessels: very large, very few, orange/brown deposits present

Parenchyma: diffusein-aggregates, winged, confluent, and banded

Rays: narrow, close spacing

Odor: pleasing scent when being worked

Notes: fluoresces under blacklight; ripple marks present

ROT RESISTANCE: Rated as DURABLE to VERY DURABLE; excellent resistance to termites and other insects.

WORKABILITY: Generally easy to work, though tearout can occur during planing on quartersawn or interlocked grain. Turns, glues, and finishes well.

ALLERGIES/TOXICITY: Reported as a sensitizer; can cause eye, skin, and respiratory irritation.

PRICING/AVAILABILITY: Widely imported as lumber in a variety of sizes, as well as turning and craft blanks. Prices are in the mid range for an imported hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

COMMON USES: Veneer, flooring, turned objects, musical instruments, furniture, tool handles, and other small specialty wood objects.

COMMENTS: With a very unique reddish orange coloration, the wood is also called Vermillion. Unfortunately, this dramatic color is inevitably darkened to a deep reddish brown color. UV-inhibiting finishes may prolong (but not prevent) the gradual color-shift of this brightly colored wood.

Amendoim Pear

Pterogyne nitens

DISTRIBUTION: Scattered throughout southern South America

TREE SIZE: 50–75 ft (15–23 m) tall,

2-3 ft (.6-1 m) trunk diameter

AVERAGE DRIED WEIGHT: 50 lbs/ft3 (800 kg/m3)

SPECIFIC GRAVITY (BASIC, 12% MC): .66, .80

JANKA HARDNESS: 1,780 lb_f (7,940 N)

MODULUS OF RUPTURE: 15,780 lb_f/in^2 (108.8 MPa)

ELASTIC MODULUS: 1,771,000 lb_f/in^2 (12.21 GPa)

CRUSHING STRENGTH: 7,500 lb_f/in² (51.7 MPa)

SHRINKAGE: Radial: 3.4%, Tangential: 6.0%,

Volumetric: 10.0%, T/R Ratio: 1.8

Pyrus communis

DISTRIBUTION: Central and eastern Europe; also widely planted in temperate regions worldwide

TREE SIZE: 20–30 ft (6–9 m) tall,

6-12 in (15-30 cm) trunk diameter

AVERAGE DRIED WEIGHT: 43 lbs/ft³ (690 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .52, .69

JANKA HARDNESS: 1,660 lb_f (7,380 N)

MODULUS OF RUPTURE: 12,080 lb_f/in² (83.3 MPa)

ELASTIC MODULUS: 1,131,000 lb_f/in^2 (7.80 GPa)

CRUSHING STRENGTH: 6,400 lb_f/in² (44.1 MPa)

SHRINKAGE: Radial: 3.9%, Tangential: 11.3%,

Volumetric: 13.8%, T/R Ratio: 2.9

This wood is called by a myriad of local and regional names, but it's simply marketed as Amendoim in the United States. The wood's overall appearance is very similar to mahogany (*Swietenia* spp.), and it's primarily sold as flooring planks. Prices are in the mid range for an imported South American species.

Amendoim has a blunting effect on cutters due to its naturally high silica content. It turns, glues, and finishes well, and also responds well to steam bending.

Used in Europe much in the same way that Black Cherry (*Prunus serotina*) is utilized in North America: as a high-quality cabinet hardwood. Both woods are in the *Rosaceæ* or Rose family and belong to a broader category simply labeled as *fruitwood*. Both Pear and Cherry are similar visually and anatomically (though Pear tends to have narrower rays), and the two can't be reliably separated.

Pear is sometimes steamed to deepen the pink coloration, or it's dyed black and used as a substitute for ebony. Larger logs are commonly turned into veneer for architectural purposes.

Pear bowl by Steve Earis

Distinguishing Red Oak from White Oak

Within the massive *Quercus* genus, oak species are subdivided into a number of sections, though all commercially harvested New World oaks can be placed into one of two categories: red oak, or white oak. This division is based on the morphology of the trees themselves—for instance, red oaks have pointed lobes on the leaves, while white oaks have rounded lobes. But the wood also has a few important distinctions, most notably, white oak is rot resistant, while red oak is not—an important detail for boatbuilding and exterior construction projects.

A typical red oak leaf is shown on the left (note the pointed lobes). The rounded lobes of white oak are seen on the right.

At a casual glance, unfinished oak lumber will generally be light brown, either with a slight reddish cast (usually red oak), or a subtle olive-colored cast (white oak). However, there are abnormally light or dark outliers and pieces that are ambiguously colored, making separation based on color alone unreliable—this is especially true if the wood is finished and/or stained.

While there is one particular species that's commonly considered the White Oak (Quercus alba), and one particular species that's considered the Red Oak (Quercus rubra), in reality, oak lumber is not sold on a species level. Instead, it's sold under a broader species grouping: either red or white.

Besides the leaves, there are a few other ways to distinguish between the two groupings of oak wood.

TYLOSES: When viewing the endgrain, the large earlywood pores found on red oaks are open and empty. The pores of white oaks, however, are all plugged with tyloses (bubble-like structures: discussed on page 32). Corresponding endgrain images of red and white oak are shown on their respective profiles over the next few pages.

RAY HEIGHT: When looking at the face grain, particularly in the flatsawn areas, the thin dark brown streaks running with the grain direction are rays. Red oaks will almost always have very short rays, usually between ½" to ½" high, rarely ever more than ¾" to 1" in height. White oaks, on the other hand, will have much taller rays, frequently exceeding ¾" on most boards.

Black Oak (*Quercus velutina*) is pictured on the left, and exhibits very short rays, indicative of red oak species. The image on the right shows the longer rays that are characteristic of flatsawn sections of the white oak species—in this case, Swamp Chestnut Oak (*Quercus michauxii*).

CHEMICAL TESTING: The process for differentiating between red and white oaks using a chemical reagent (along with a recipe for mixing a solution of sodium nitrite) is described on page 22.

COLOR/APPEARANCE: Heartwood is light to medium brown, commonly with an olive cast. White to light brown sapwood isn't always sharply demarcated from the heartwood. Quartersawn sections display prominent ray fleck patterns.

GRAIN/TEXTURE: Grain is straight; coarse, uneven texture.

ROT RESISTANCE: Rated as VERY DURABLE; frequently used in boatbuilding and tight cooperage applications.

WORKABILITY: Produces good results with hand and machine tools. Moderately high shrinkage values, resulting in mediocre dimensional stability, especially in flatsawn boards. Can react with iron (particularly when wet) and cause staining and discoloration. Responds well to steam bending. Glues, stains, and finishes well.

ALLERGIES/TOXICITY: Reported as a sensitizer; can cause eye and skin irritation, runny nose, asthma-like respiratory effects, and nasopharyngeal cancer (with occupational exposure).

PRICING/AVAILABILITY: Abundant availability in a range of widths and thicknesses, both as flatsawn and quarter-

sawn lumber. Slightly more expensive than Red Oak (*Q. rubra*), prices are moderate for a domestic hardwood.

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

Quartersawn White Oak box

White Oak

Quercus alba

DISTRIBUTION: Eastern United States

TREE SIZE: 65-85 ft (20-25 m) tall,

3-4 ft (1-1.2 m) trunk diameter

AVERAGE DRIED WEIGHT: 47 lbs/ft³ (755 kg/m³)

SPECIFIC GRAVITY (BASIC, 12% MC): .60, .75

JANKA HARDNESS: 1,360 lb_f (6,000 N)

MODULUS OF RUPTURE: 15,200 lb_f/in^2 (104.8 MPa) ELASTIC MODULUS: 1,780,000 lb_f/in^2 (12.30 GPa) CRUSHING STRENGTH: 7,440 lb_f/in^2 (51.3 MPa)

SHRINKAGE: Radial: 5.6%, Tangential: 10.5%, Volumetric: 16.3%, T/R Ratio: 1.9

COMMON USES: Cabinetry, furniture, interior trim, flooring, boatbuilding, barrels, and veneer.

COMMENTS: Strong, beautiful, rot-resistant, easy to work, and economical, White Oak represents an exceptional value to woodworkers. It's no wonder that the wood is so widely used in cabinet and furniture making.

Connecticut's state quarter was minted with a picture and inscription of a famous White Oak, the Charter Oak. In 1687, a cavity within the tree was used as a hiding place for the Connecticut Charter of 1662 to prevent its confiscation by the British.

ENDGRAIN (10×)

Porosity: ring-porous

Arrangement:

earlywood exclusively solitary in two to four rows, latewood in radial/ dendritic arrangement

Vessels: very large in earlywood, small in latewood; tyloses abundant

Parenchyma:

diffuse-in-aggregates

Rays: narrow and very wide, normal spacing

Odor: distinct scent when being worked

White Oak Grouping

In addition to *Quercus alba*, there are several other species of oak that are categorized and sold interchangeably as white oak. These species are all found in the eastern United States.

- Swamp White Oak (Quercus bicolor)
- Overcup Oak (Quercus lyrata)
- Bur Oak (Quercus macrocarpa)
- Swamp Chestnut Oak (Quercus michauxii)

Chestnut Oak (Q. prinus) and Post Oak (Q. stellata) are found in the same geographic region, but don't typically yield quality lumber. However, when these trees are found in better growing conditions, they produce good timber and are marketed within the white oak group as well.

Oregon White Oak (*Q. garryana*), sometimes referred to as Garry Oak, is one of the only species of oak found in the Pacific Northwest region of North America. It's roughly the western equivalent to the eastern white oaks, though not nearly as widespread, nor as commercially important.

INTERNATIONAL: In Europe, Sessile Oak (*Q. petræa*) bears much similarity to the white oak species found in North America. However, being native to Europe, the wood is much more frequently seen with English Oak (*Q. robur*), a tremendously popular species listed separately on page 214. Both European species are commercially important, and are harvested and sold for the same purposes as American white oaks.

RELATED SPECIES	AVERAGE DRIED WEIGHT	JANKA HARDNESS	MODULUS OF RUPTURE	ELASTIC MODULUS	CRUSHING STRENGTH	SHRINKAGE
Swamp White Oak Quercus bicolor	48 lbs/ft ³ (765 kg/m ³)	1,600 lb _f (7,140 N)	17,400 lb _f /in ² (120.0 MPa)	2,029,000 lb _f /in ² (13.99 GPa)	8,400 lb _f /in ² (57.9 MPa)	Radial–5.5% Tangential–10.6% Volumetric–17.7% T/R Ratio–1.9
Oregon White Oak Quercus garryana	51 lbs/ft ³ (815 kg/m ³)	1,640 lb _f (7,310 N)	10,200 lb _f /in ² (70.3 MPa)	1,089,000 lb _f /in ² (7.51 GPa)	7,320 lb _f /in ² (50.5 MPa)	Radial–4.2% Tangential–9.0% Volumetric–13.2% T/R Ratio–2.1
Overcup Oak Quercus lyrata	47 lbs/ft ³ (760 kg/m ³)	1,190 lb _f (5,290 N)	12,600 lb _f /in ² (86.9 MPa)	1,420,000 lb _f /in ² (9.79 GPa)	6,200 lb _f /in ² (42.8 MPa)	Radial–5.3% Tangential–12.7% Volumetric–16.0% T/R Ratio–2.4
Bur Oak Quercus macrocarpa	45 lbs/ft ³ (720 kg/m ³)	1,360 lb _f (6,030 N)	10,920 lb _f /in ² (75.3 MPa)	1,040,000 lb _f /in ² (7.17 GPa)	5,890 lb _f /in ² (40.6 MPa)	Radial-4.4% Tangential-8.8% Volumetric-12.7% T/R Ratio-2.0
Swamp Chestnut Oak Quercus michauxii	49 lbs/ft ³ (780 kg/m ³)	1,230 lb _f (5,460 N)	13,760 lb _f /in ² (94.9 MPa)	1,753,000 lb _f /in ² (12.09 GPa)	7,200 lb _f /in ² (49.6 MPa)	Radial–5.2% Tangential–10.8% Volumetric–16.4% T/R Ratio–2.1
Sessile Oak Quercus petræa	44 lbs/ft ³ (710 kg/m ³)	1,120 lb _f (4,990 N)	14,080 lb _f /in ² (97.1 MPa)	1,518,000 lb _f /in ² (10.47 GPa)	6,860 lb _f /in ² (47.3 MPa)	Radial–4.5% Tangential–9.7% Volumetric–14.2% T/R Ratio–2.2
Chestnut Oak Quercus prinus	47 lbs/ft ³ (750 kg/m ³)	1,130 lb _f (5,030 N)	13,300 lb _f /in ² (91.7 MPa)	1,590,000 lb _f /in ² (10.97 GPa)	6,830 lb _f /in ² (47.1 MPa)	Radial–5.3% Tangential–10.8% Volumetric–16.4% T/R Ratio–2.0
Post Oak Quercus stellata	47 lbs/ft ³ (750 kg/m ³)	1,350 lb _f (5,990 N)	13,070 lb _f /in ² (90.1 MPa)	1,495,000 lb _f /in ² (10.31 GPa)	6,530 lb _f /in ² (45.1 MPa)	Radial–5.4% Tangential–9.8% Volumetric–16.2% T/R Ratio–1.8

COLOR/APPEARANCE: Heartwood is light to medium brown, commonly with a reddish cast. White to light brown sapwood isn't always sharply demarcated from the heartwood. Quartersawn sections display prominent ray fleck patterns.

GRAIN/TEXTURE: Grain is straight; coarse, uneven texture.

ROT RESISTANCE: Rated as NON-DURABLE to PERISH-ABLE; poor insect/borer resistance. Stains when in contact with water (particularly along the porous growth ring areas).

WORKABILITY: Produces good results with hand and machine tools. Moderately high shrinkage values, resulting in mediocre dimensional stability, especially in flatsawn boards. Responds well to steam bending. Glues, stains, and finishes well.

ALLERGIES/TOXICITY: Reported as a sensitizer; can cause eye and skin irritation, runny nose, asthma-like respiratory effects, and nasopharyngeal cancer (with occupational exposure).

PRICING/AVAILABILITY: Abundant availability in a good range of widths and thicknesses, both as flatsawn and quartersawn lumber. Usually slightly less expensive than White Oak (*Q. alba*), pric-

Red Oak and Sapele veneer segmented bowl

Red Oak

Quercus rubra

DISTRIBUTION: Northeastern United States

and Southeastern Canada

TREE SIZE: 80-115 ft (25-35 m) tall,

3–6 ft (1–2 m) trunk diameter

AVERAGE DRIED WEIGHT: $44 \, lbs/ft^3 \, (700 \, kg/m^3)$

SPECIFIC GRAVITY (BASIC, 12% MC): .56, .70

JANKA HARDNESS: 1,290 lb_f (5,700 N)

MODULUS OF RUPTURE: 14,300 lb_f/in^2 (98.6 MPa) **ELASTIC MODULUS:** 1,820,000 lb_f/in^2 (12.50 GPa)

CRUSHING STRENGTH: $6,760 lb_f/in^2$ (46.6 MPa)

SHRINKAGE: Radial: 4.0%, Tangential: 8.6%, Volumetric: 13.7%, T/R Ratio: 2.2

SUSTAINABILITY: Not listed in the CITES Appendices, or on the IUCN Red List of Threatened Species.

COMMON USES: Cabinetry, furniture, interior trim, flooring, and veneer.

COMMENTS: Arguably the most popular hardwood in the United States, Red Oak is a ubiquitous sight in many homes. Even many vinyl/imitation wood surfaces are printed to look like Red Oak.

ENDGRAIN (10×)

Porosity: ring-porous

Arrangement:

earlywood exclusively solitary in two to four rows, latewood in radial/ dendritic arrangement

Vessels: very large in earlywood, small in latewood; tyloses absent or scarce

Parenchyma:

diffuse-in-aggregates

Rays: narrow and very wide, normal spacing **Odor:** distinct scent

when being worked

Red Oak Grouping

Quercus rubra (seen on facing page) is sometimes referred to more specifically as Northern Red Oak to help distinguish it from Southern Red Oak (Q. falcata), a species that's sold interchangeably in the red oak grouping, though the wood of the southern species is typically of inferior quality (as seen by the mechanical data below).

There are also a number of other species of oak native to the eastern United States (listed below) which are harvested and sold within the red oak group. Cherrybark Oak (*Q. pagoda*) and Shumard Oak (*Q. shumardii*) rank among the strongest and highest-quality timbers in the red oak group. At the opposite end of the spectrum is Laurel Oak (*Q. laurifolia*), which is typically only used for firewood or as pulpwood in papermaking.

One geographic outlier is California Black Oak (*Q. kelloggii*), found on the west coast of the United States. Historically, it's been regarded very lowly, but more recently efforts have been made to utilize this tree for lumber.

RELATED SPECIES	AVERAGE DRIED WEIGHT	JANKA HARDNESS	MODULUS OF RUPTURE	ELASTIC MODULUS	CRUSHING STRENGTH	SHRINKAGE
Scarlet Oak Quercus coccinea	46 lbs/ft ³ (735 kg/m ³)	1,400 lb _f (6,230 N)	16,080 lb _f /in ² (110.9 MPa)	1,766,000 lb _f /in ² (12.18 GPa)	8,250 lb _f /in ² (56.9 MPa)	Radial–4.4% Tangential–10.8% Volumetric–14.7% T/R Ratio–2.5
Southern Red Oak Quercus falcata	42 lbs/ft ³ (675 kg/m ³)	1,060 lb _f (4,720 N)	12,040 lb _f /in ² (83.0 MPa)	1,480,000 lb _f /in ² (10.20 GPa)	6,090 lb _f /in ² (42.0 MPa)	Radial–4.7% Tangential–11.3% Volumetric–16.1% T/R Ratio–2.4
California Black Oak Quercus kelloggii	39 lbs/ft ³ (620 kg/m ³)	1,090 lb _f (4,840 N)	8,610 lb _f /in ² (59.4 MPa)	980,000 lb _f /in ² (6.76 GPa)	5,640 lb _f /in ² (38.9 MPa)	Radial–3.6% Tangential–6.6% Volumetric–10.2% T/R Ratio–1.8
Laurel Oak Quercus laurifolia	46 lbs/ft ³ (740 kg/m ³)	1,210 lb _f (5,380 N)	14,330 lb _f /in ² (98.8 MPa)	1,793,000 lb _f /in ² (12.37 GPa)	6,980 lb _f /in ² (48.1 MPa)	Radial–4.0% Tangential–9.9% Volumetric–19.0% T/R Ratio–2.5
Water Oak Quercus nigra	45 lbs/ft ³ (725 kg/m³)	1,190 lb _f (5,290 N)	16,620 lb _f /in ² (114.6 MPa)	2,034,000 lb _f /in ² (14.02 GPa)	6,770 lb _f /in ² (46.7 MPa)	Radial–4.4% Tangential–9.8% Volumetric–16.1% T/R Ratio–2.2
Cherrybark Oak Quercus pagoda	49 lbs/ft ³ (785 kg/m ³)	1,480 lb _f (6,580 N)	18,100 lb _f /in ² (124.8 MPa)	2,280,000 lb _f /in ² (15.72 GPa)	8,740 lb _f /in ² (60.3 MPa)	Radial–5.5% Tangential–10.6% Volumetric–16.1% T/R Ratio–1.9
Pin Oak Quercus palustris	44 lbs/ft ³ (705 kg/m ³)	1,500 lb _f (6,650 N)	13,860 lb _f /in ² (95.6 MPa)	1,713,000 lb _f /in ² (11.81 GPa)	6,750 lb _f /in ² (46.6 MPa)	Radial–4.3% Tangential–9.5% Volumetric–14.5% T/R Ratio–2.2
Willow Oak Quercus phellos	48 lbs/ft ³ (770 kg/m ³)	1,460 lb _f (6,490 N)	14,860 lb _f /in ² (102.4 MPa)	1,804,000 lb _f /in ² (12.44 GPa)	7,040 lb _f /in ² (48.6 MPa)	Radial–5.0% Tangential–9.6% Volumetric–18.9% T/R Ratio–1.9
Shumard Oak Quercus shumardii	46 lbs/ft ³ (730 kg/m ³)	1,290 lb _f (5,750 N)* *estimated	17,830 lb _f /in ² (123.0 MPa)	2,154,000 lb _f /in ² (14.86 GPa)	No data available	No data available
Black Oak Quercus velutina	45 lbs/ft ³ (715 kg/m ³)	1,210 lb _f (5,380 N)	14,430 lb _f /in ² (99.5 MPa)	1,736,000 lb _f /in ² (11.97 GPa)	6,450 lb _f /in ² (44.5 MPa)	Radial–4.4% Tangential–11.1% Volumetric–15.1% T/R Ratio–2.5

Modulus of Elasticity

Botanical name	×1,000 lb _f /in ² GPa		×1,000 lb _f /in² GPa		×1,000 lb _f /in ² GPa	Botanical name	×1,000 lb _f /in ² G	<u>Pa</u>
Swartzia cubensis	3,715 25.62	Diospyros virginiana	2,010 13.86	Cordia dodecandra	1,585 10.93	Castanea sativa		.61
Chlorocardium rodiei Swartzia benthamiana	3,573 24.64 3,535 24.38	Betula alleghaniensis Aspidosperma polyneuron	2,010 13.86 2.002 13.81	Guarea cedrata Senna siamea	1,582 10.91 1,581 10.90	Pinus jeffreyi Pinus strobus		.55 .55
Brosimum guianense	3,364 23.20	Pinus elliottii	1,980 13.66	Albizia ferruginea	1,581 10.90	Pinus strobus Pinus pinaster		.54
Manilkara bidentata	3,344 23.06	Pinus palustris	1,980 13.66	Betula nigra	1,580 10.90	Betula alnoides	1,235 8.	.52
Dipteryx odorata	3,237 22.33 3,200 22.07	Carapa spp.	1,965 13.55 1,960 13.52	Liriodendron tulipifera	1,580 10.90	Baikiaea plurijuga	1,230 8. 1,230 8.	.48 .48
Handroanthus spp. Dalbergia stevensonii	3,190 22.00	Quercus virginiana Palaguium spp.	1.939 13.37	Machaerium spp. Mansonia altissima	1,574 10.86 1,570 10.83	Arbutus menziesii Castanea dentata		.40
Acacia omalophylla*	3,118 21.50	Cornus florida	1,922 13.26	Juglans regia	1,568 10.81	Aucoumea klaineana	1,228 8.	.47
Brosimum rubescens	3,013 20.78	Tamarindus indica	1,918 13.22	Weinmannia trichosperma	1,568 10.81	Enterolobium cyclocarpum	1,226 8.	.46
Krugiodendron ferreum Eucalyptus diversicolor	2,966 20.46 2,965 20.44	Colophospermum mopane Gluta spp.	1,917 13.22 1,915 13.21	Pinus nigra Lagerstroemia spp.	1,568 10.81 1.566 10.80	Umbellularia californica Dyera costulata		.45 .44
Manilkara zapota	2,960 20.41	Betula neoalaskana	1,900 13.10	Eucalyptus deglupta	1,565 10.79	Sequoia sempervirens		.41
Peltogyne spp.	2,937 20.26	Carya laciniosa	1,890 13.03	Picea rubens	1,560 10.76	Catalpa speciosa		.34
Koompassia malaccensis Roupala montana	2,913 20.09 2.887 19.91	Larix occidentalis Parashorea spp. (Wht. Seraya)	1,870 12.90	Tieghemella heckelii Pinus pungens	1,552 10.71 1.550 10.69	Abies alba Tsuga canadensis		.28 .28
Platymiscium spp.	2,837 19.56	Albizia lebbeck	1,836 12.66	Shorea spp. (Yellow Meranti)	1,548 10.68	Fraxinus mandshurica	1,195 8.	.24
Zygia racemosa	2,818 19.43	Acer saccharum	1,830 12.62	Quercus robur	1,544 10.65	Celtis occidentalis	1,190 8.	.21
Bambusa spp. Lophira alata	2,755 19.00 2,754 18.99	Nothofagus cunninghamii Magnolia acuminata	1,830 12.62 1,820 12.55	Ulmus thomasii Khaya spp.	1,540 10.62 1,537 10.60	Rhus spp. Pinus lambertiana		.21 .21
Lonchocarpus spp.	2,745 18.93	Quercus phellos	1.804 12.44	Abies grandis	1,530 10.55	Nyssa sylvatica		.19
Hymenaea courbaril	2,745 18.93	Quercus laurifolia	1,793 12.37	Picea mariana	1,523 10.50	Populus tremuloides	1,180 8.	.14
Metopium brownei Eucalyptus globulus	2,733 18.85 2,721 18.76	Carya cordiformis Pinus taeda	1,790 12.34 1,790 12.34	Pinus virginiana Terminalia superba	1,520 10.48 1,520 10.49	Juglans cinerea Pinus flexilis		.14 .07
Caesalpinia paraguariensis*	2,721 18.70 2,712 18.70	Fraxinus excelsior	1,785 12.34	Quercus petraea	1,518 10.49	Aesculus spp. (Buckeye)		.07
Dalbergia retusa*	2,712 18.70	Tectona grandis	1.781 12.28	Dalbergia sissoo	1,508 10.40	Ulmus pumila	1,154 7.	.96
Guibourtia ehie	2,701 18.63 2,672 18.43	Pinus kesiya Distemonanthus benthamianus	1,776 12.25	Acacia koa	1,503 10.37 1,497 10.32	Grevillea robusta		.93 .93
Anadenanthera colubrina Guibourtia spp. (Bubinga)	2.670 18.41	Pterogyne nitens	1.771 12.21	Simira salvadorensis* Quercus stellata	1,495 10.32	Betula populifolia Samanea saman		.92
Acacia cambagei	2,610 18.00	Cordia spp. (Ziricote)	1,767 12.19	Ulmus rubra	1,490 10.28	Acer saccharinum	1,140 7.	.86
Dalbergia melanoxylon	2,603 17.95 2,586 17.83	Quercus coccinea	1,766 12.18 1,765 12.17	Prunus serotina Shorea spp. (White Meranti)	1,490 10.28 1,485 10.24	Pinus edulis	1,140 7.	.86 .81
Vouacapoua americana Olea spp.	2,586 17.85 2.577 17.77	Pseudotsuga menziesii Quercus alba	1,765 12.17 1.762 12.15	Abies concolor	1,485 10.24 1,485 10.24	Cupressus macrocarpa Roseodendron donnell-smith		.81
Caesalpinia platyloba	2,574 17.76	Quercus rubra	1,761 12.14	Abies magnifica	1,483 10.23	Juglans neotropica	1,132 7.	.81
Millettia laurentii	2,550 17.59	Prosopis juliflora	1,759 12.13	Ulmus crassifolia	1,480 10.21	Pyrus communis		.80
Caesalpinia echinata Prosopis kuntzei	2,544 17.54 2,520 17.38	Pterocarpus dalbergioides Quercus michauxii	1,754 12.10 1,753 12.09	Quercus falcata Spirostachys africana	1,480 10.20 1,478 10.19	Dalbergia tucurensis Sassafras albidum	1,125 7. 1,120 7.	.76 .72
Diospyros celebica	2,515 17.35	Pinus echinata	1,750 12.07	Prunus domestica	1,478 10.19	Prosopis nigra	1,117 7.	.70
Buxus sempervirens	2,494 17.20	Pinus serotina	1,750 12.07	Cedrus libani	1,465 10.10	Ilex opaca		.66
Combretum schumannii Bobgunnia fistuloides	2,494 17.20 2,480 17.10	Casuarina cunninghamiana Entandrophragma cylindricum	1,747 12.05 1 746 12.04	Pinus patula Pinus sylvestris	1,463 10.09 1,461 10.08	Thuja plicata Cryptomeria japonica		.66 .65
Shorea spp. (Balau)	2,457 16.95	Betula pubescens	1,745 12.03	Pinus monticola	1,460 10.07	Populus balsamifera	1,100 7.	.59
Diospyros crassiflora	2,449 16.89	Pinus caribaea	1,745 12.03	Tilia americana	1,460 10.07	Quercus garryana		.51
Euxylophora paraensis Schinopsis spp.	2,413 16.64 2,407 16.60	Shorea spp. (Dk. Red Meranti) Dalbergia baronii	1,743 12.02 1,742 12.01	Swietenia macrophylla Pinus radiata	1,458 10.06 1,458 10.06	Acer negundo* Quercus macrocarpa	1,050 7. 1,040 7.	.24 .17
Astronium graveolens	2,401 16.56	Eucalyptus leucoxylon	1,740 12.00	Acer macrophyllum	1,450 10.00	Calocedrus decurrens	1.040 7.	.17
Ebenopsis ebano	2,398 16.54	Fraxinus americana	1,740 12.00 1,736 11.97	Taxodium distichum	1,440 9.93	Aesculus hippocastanum	1,036 7.	.14
Myroxylon balsamum Piptadenia spp.	2,380 16.41 2,380 16.41	Quercus velutina Carya illinoinensis	1,730 11.97 1,730 11.93	Acer pseudoplatanus Pinus rigida	1,438 9.92 1,430 9.86	Ulmus procera Salix nigra		.12 .97
Dalbergia cochinchinensis	2,375 16.38	Pterocarpus indicus	1,724 11.89	Populus grandidentata	1,430 9.86	Cupressus x leylandii	989 6.	.82
Microberlinia brazzavillensis		Araucaria heterophylla	1,723 11.89	Quercus lyrata	1,420 9.79 1,420 9.79	Quercus kelloggii		.76 .69
Julbernardia pellegriniana Intsia bijuga	2,334 16.09 2,310 15.93	Agathis australis Pericopsis elata	1,721 11.87 1,715 11.83	Cupressus nootkatensis Cymnocladus dioicus	1,420 9.79 1.420 9.79	Triplochiton scleroxylon Rhamnus spp.		.62
Dipterocarpus spp.	2,293 15.81	Quercus palustris	1,713 11.81	Platanus occidentalis	1,420 9.79	Chamaecyparis thyoides	930 6.	.41
Calycophyllum candidissimu Millettia stuhlmannii	im 2,284 15.75 2,281 15.73	Eucalyptus camaldulensis	1,711 11.80 1,706 11.77	Populus tremula Pinus clausa	1,414 9.75 1,410 9.72	Prosopis alba		.08 .07
Quercus pagoda	2,280 15.72	Araucaria cunninghamii Pterocarpus soyauxii	1.700 11.72	Picea abies	1,406 9.70	Juniperus virginiana Thuja occidentalis	800 5.	.52
Bulnesia arborea	2,272 15.67	Carya myristiciformis	1,700 11.72	Pinus glabra	1,405 9.69	Juniperus deppeana		.52 .48
Borassus flabellifer Carya glabra	2,262 15.60 2,260 15.59	Ostrya virginiana Tilia x europaea	1,700 11.72 1,698 11.71	Fraxinus quadrangulata Magnolia grandiflora	1,400 9.66 1,400 9.66	Paulownia spp. Ochroma pyramidale	635 4. 538 3.	.38 .71
Apuleia leiocarpa	2,257 15.57	Carpinus spp.	1,693 11.68	Ocotea porosa	1,394 9.61	Ochi Orna pyrannicale	330 3.	./ 1
Gonystylus spp.	2,255 15.55	Maclura pomifera	1,689 11.64	Abies balsamea	1,387 9.57			
Carya tomentosa Pinus oocarpa	2,220 15.31 2.209 15.23	Entandrophragma utile Abies amabilis	1,689 11.65 1,681 11.59	Mitragyna ciliata Alnus rubra	1,386 9.56 1,380 9.52			
Berchemia zeyheri	2,193 15.12	Juglans nigra	1,680 11.59	Populus deltoides	1,370 9.45			
Betula lenta	2,170 14.97	Cinnamomum camphora	1,676 11.56	Picea engelmannii	1,369 9.44			
Centrolobium spp. Pinus merkusii	2,164 14.93 2.161 14.90	Mangifera indica Dalbergia latifolia	1,672 11.53 1,668 11.50	Milicia spp. Fraxinus latifolia	1,360 9.38 1,360 9.38			
Carya ovata	2,160 14.90	Fraxinus pennsylvanica	1,660 11.45	Terminalia ivorensis	1,355 9.34			
Maclura tinctoria Quercus shumardii	2,160 14.90 2,154 14.86	Endiandra palmerstonii	1,656 11.42	Morus spp.	1,352 9.32 1,351 9.32			
Acacia melanoxylon	2,148 14.82	Cocos nucifera Shorea spp. (Lt. Red Meranti)	1,654 11.41 1,652 11.39	Callitris columellaris Swietenia mahogani	1,351 9.32 1,351 9.31			
Eucalyptus marginata	2,132 14.70	Ulmus alata	1,650 11.38	Taxus brevifolia	1,350 9.31			
Acacia mearnsii	2,117 14.60	Araucaria angustifolia	1,648 11.37	Pinus banksiana	1,350 9.31			
Chloroxylon swietenia Afzelia spp.	2,111 14.56 2,094 14.44	Chamaecyparis lawsoniana Acer rubrum	1,646 11.35 1,640 11.31	Lovoa trichilioides Ulmus americana	1,340 9.24 1,340 9.24			
Fagus sylvatica	2,075 14.31	Liquidambar styraciflua	1,640 11.31 1,640 11.31	Pinus contorta	1.340 9.24			
Eucalyptus obliqua	2,071 14.29	Larix larcina	1,640 11.31	Lagarostrobos franklinii	1,339 9.23			
Eucalyptus grandis Robinia pseudoacacia	2,052 14.15 2,050 14.14	Magnolia virginiana Gleditsia triacanthos	1,640 11.31 1,630 11.24	Toona ciliata Abies lasiocarpa	1,336 9.22 1,324 9.13			
Eucalyptus urograndis	2,049 14.13	Tsuga heterophylla	1,630 11.24	Cedrela odorata	1,323 9.12			
Eucalyptus robusta	2,047 14.12	Pinus resinosa Ailanthus altissima	1,630 11.24	Hevea brasiliensis Picea glauca	1,315 9.07			
Guaiacum officinale Diospyros ebenum	2,043 14.09 2,040 14.07	Alianthus aitissima Acer nigrum	1,623 11.19 1,620 11.17	Alnus glutinosa	1,315 9.07 1,303 8.99			
Quercus nigra	2,034 14.02	Abies procera	1,619 11.17	Melia azedarach	1,300 8.97			
Eucalyptus regnans Eucalyptus melliodora	2,033 14.02 2,030 14.00	Ulmus glabra Turraeanthus africanus	1,615 11.14	Cardwellia sublimis Platanus x acerifolia	1,293 8.92 1,291 8.90			
Guibourtia hymenaeifolia	2,030 14.00 2,030 14.00	Acacia mangium	1,614 11.13 1,605 11.07	Populus alba	1,291 8.90 1,290 8.90			
Quercus bicolor	2,029 13.99	Fraxinus nigra	1,600 11.03	Pinus ponderosa	1,290 8.90			
Betula pendula Dalbergia nigra	2,024 13.96 2,020 13.93	Picea sitchensis Quercus prinus	1,600 11.03 1,590 10.97	Malus sylvestris Populus trichocarpa	1,270 8.76 1,270 8.76			
Carya aquatica	2,020 13.93	Betula papyrifera	1.590 10.97	Pterocarpus angolensis	1,267 8.73			
Prosopis africana	2,019 13.92	Pouteria spp.	1,588 10.95	Nyssa aquatica	1,251 8.62			
*1	Estimated /strope	nth areas values		All	voluce are for	wood at 100/ MC		

*Estimated/strength group values

All values are for wood at 12% MC

Bibliography

- **Akgül, Mehmet, Nadir Ayrilmis, Osman Çamlıbel, and Süleyman Korkut.** "Potential utilization of burned wood in manufacture of medium density fiberboard." *Journal of Material Cycles and Waste Management* 15, no. 2 (2013): 195–201.
- **Akyildiz, M. Hakan, and Hamiyet Sahin Kol.** "Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood." *Journal of Environmental Biology,* 31, no. 3 (2010): 351–355.
- **Alden, Harry A.** Hardwoods of North America. Madison: USDA, Forest Service, Forest Products Laboratory, 1995.
- **Alden, Harry A.** Softwoods of North America. Madison: USDA, Forest Service, Forest Products Laboratory, 1997
- **Alves, Edenise Segala, Eduardo Luiz Longui, and Erika Amano.** "Pernambuco Wood (Caesalpinia echinata) Used in the Manufacture of Bows for String Instruments." *IAWA Journal* 29, no. 3 (2008): 323–335.
- **Anagbo, P.E., and N.A. Oguocha.** "The Structure and Mechanical Properties of Palm Timber as a Fibre Composite." *Journal of Engineering Materials and Technology* 111, no. 1 (1989): 21–25.
- **Arcery, John, and Deborah Briggs.** CITES I-II-III Timber Species Manual. Washington DC: USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, 2010.
- **Arnold, Roger.** "Corruption, bloodshed and death—the curse of rosewood." *Environmental Investigation Agency*, 8/16/2013, http://eia-international.org/corruption-bloodshed-and-death-the-curse-of-rosewood.
- **Bakri, B.** "Analisis Sifat Mekanis Kayu Ebony di Sulawesi Tengah [Analysis of Mechanical Properties of Ebony Wood in Central Sulawesi]." *Jurnal SMARTek* 6, no. 1 (2008): 9–17.
- **Bamber, R.K.** "Longitudinal Parenchyma and Resin Plugs in Araucariaceae Wood." *IAWA Bulletin* (1979): 75–79.
- Berni, C.A., Eleanor Bolza, and F.J. Christensen. South American Timbers: The Characteristics, Properties, and Uses of 190 Species. Melbourne: CSIRO Publishing, 1979.
- Betts, H.S. The Strength of North American Woods: Miscellaneous Publication 46. Washington, DC: USDA, Forest Service, US Government Printing Office, 1929.
- **Bhatnagar, S. P., and Alok Moitra.** *Gymnosperms.* New Delhi: New Age International, 1996.
- **Boland, D. J.** *Forest Trees of Australia*. Collingwood: CSIRO Publishing, 2006.
- **Bolza, Eleanor, and W.G. Keating.** African Timbers: The Properties, Uses and Characteristics of 700 Species. Melbourne: CSIRO Publishing, 1972.

- **Booth, F.E.M., and G.E. Wickens.** *Non-timber uses of selected arid zone trees and shrubs in Africa.* Rome: Food and Agriculture Organization of the United Nations, 1988.
- **Bootle, Keith R.** Wood in Australia. Sydney: McGraw-Hill Book, 1983.
- **Brémaud, Iris.** "Diversité des bois utilisés ou utilisables en facture d'instruments de musique [Wood varieties used or usable in musical instrument manufacture]." PhD diss., Université Montpellier II, 2006.
- **Britton, Nathaniel Lord, and Addison Brown.** An Illustrated Flora of the Northern United States, Canada and the British Possessions. New York: C. Scribner's Sons, 1898.
- **Busgen, M., and Ernst Munch.** *The Structure and Life of Forest Trees.* London: Chapman & Hall, 1929.
- **Callahan, Frank.** "Hinds Walnut (Juglans hindsii) in Oregon." *Kalmiopsis* 15 (2008): 42–52.
- **Carlquist, Sherwin.** Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Berlin: Springer, 1988.
- Carrillo, Artemio, Rahim Foroughbakhch, Fortunato Garza, Miriam Garza, María de Jesús Nañez, and Sadoth Sandoval. "Physical and mechanical wood properties of 14 timber species from Northeast Mexico." Annals of Forest Science 68, no. 4 (2011): 675–679.
- **Chattaway, M. Margaret.** "The Wood Anatomy of the Proteaceae." *Australian Journal of Biological Sciences* 1, no. 3 (1948): 279 302.
- **Chudnoff, Martin.** *Tropical Timbers of the World.* Madison: USDA, Forest Service, Forest Products Laboratory, 1979.
- **CIRAD Forestry Department.** *Tropix* 7. April, 2012. Accessed April 22, 2015. http://tropix.cirad.fr/en.
- **CITES Secretariat.** *CITES Appendices I, II, and III.* February 5, 2015. Accessed July 4, 2015. http://www.cites.org/eng/app/appendices.php.
- **Clark, David.** *Timber in Australia in Colour.* Sydney: n.p., 2010.
- **Coe, William R.** *Tikal: Guía de las Antiguas Ruinas Mayas* [Tikal: Guide to the Ancient Mayan Ruins]. Guatemala: Piedra Santa, 1988.
- **Constantine, Albert.** *Know Your Woods.* New York: Scribner, 1975.
- **Core, H. A.** *Wood Structure and Identification.* Syracuse: Syracuse University Press, 1976.
- **Dakak, J.E., R. Keller, and V. Bucur.** "Rays in Juvenile Wood of Acer." *IAWA Journal* 20, no. 4 (1999): 405–417.
- **Earle, Christopher J.** *The Gymnosperm Database.* December 29, 2013. Accessed April 22, 2015. http://conifers.org/.

- **Edwards, K. S., and G. T. Prance.** "New species of Panopsis (Proteaceae) from South America." *Kew Bulletin* 48, no. 4 (1993): 637-662.
- **Feist, William C., James K. Little, and Jill M. Wennesheimer.** The Moisture-Excluding Effectiveness of Finishes on Wood Surfaces. Madison: USDA, Forest Service, Forest Products Laboratory, 1985.
- **Forest Products Laboratory.** Wood Handbook: Wood as an Engineering Material. Madison: USDA, Forest Service, Forest Products Laboratory, 2010.
- Gasson, Peter, Regis Miller, Dov J. Stekel, Frances Whinder, and Kasia Zieminska. "Wood Identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naïve Bayes classification." Annals of Botany 105, no. 1 (2010): 45–56.
- **Gibbs, Nick.** *The Real Wood Bible.* Buffalo: Firefly Books, 2012.
- **Grose, Susan, and R.G. Olmstead.** "Taxonomic Revisions in the Polyphyletic Genus Tabebuia." *Systematic Botany* 32, no. 3 (2007): 660–670.
- **Hagqvist, Risto.** Curly Birch (Betula pendula var. carelica) and its Management in Finland. Karkkilantie: Finnish Forest Research Institute, 2007.
- **Heenan, Peter B., and Rob D. Smissen.** "Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae)." *Phytotaxa* 146, no. 1 (2003): 1–31.
- **Hemming, John.** Red Gold: The Conquest of the Brazilian Indians, 1500–1760. Cambridge: Harvard University Press, 1978.
- **Hinds, Paul.** *HobbitHouse Wood ID site.* May 2014. Accessed April 22, 2015. http://www.hobbithouseinc.com/personal/woodpics/.
- **Hoadley, R. Bruce.** *Identifying Wood.* Newtown: Taunton Press, 1990.
- **Hoadley, R. Bruce.** *Understanding Wood.* Newtown: Taunton Press, 2000.
- **Hough, Romeyn Beck, and Klaus Ulrich Leistikow.** *The Woodbook: The Complete Plates.* Köln: Taschen, 2007.
- International Union for Conservation of Nature. The IUCN Red List of Threatened Species. February 2014. Accessed April 22, 2015. http://www.iucnredlist.org.
- **James, Barry, and Danielle James.** "African Trees and Wood: Berchemia zeyheri (Red ivory)." *World of Wood* 64, no. 3 (2011): 10–11.
- **Jahnel, Franz.** Manual of Guitar Technology: The History and Technology of Plucked String Instruments. Frankfurt: Verlag Das Musikinstrument, 1981.
- **Kangshan, Mao, Gang Hao, Jianquan Liu, Robert P. Adams, and Richard I. Milne.** "Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals." *New Phytologist* 188, no. 1 (2010): 254–272.
- **Kellogg, Royal Shaw.** *Lumber and Its Uses.* New York: Scientific Book Corp., 1931.

- **Knaggs, G., and Stella Xenopoulou.** *Guide to Irish Hardwoods*. Dublin: COFORD, 2004.
- **Knoblauch, Birgit.** "Estudio ecológico, silvícola y de utilización del Granadillo (Dalbergia tucurensis J.D. Smith) en bosques latifoliados de Honduras [Ecological, forestry, and uses of Granadillo (Dalbergia tucurensis J.D. Smith) in broadleaf forests in Honduras]." Bachelor thesis, Zamorano, 2001.
- **Kukachka, B. Francis.** Properties of Imported Tropical Woods. Madison: USDA, Forest Service, Forest Products Laboratory, 1969.
- Kumar, Satish, K.S. Shukla, Tndra Dev, and P.B. Dobriyal. Bamboo Preservation Techniques: A Review. Dehradun: International Network for Bamboo and Rattan, Indian Council of Forestry Research Education, 1994
- **Leavengood, Scott A.** *Identifying Common Northwest Wood Species.* Corvallis: Oregon State University, 1998.
- **Longwood, Franklin R.** Commercial Timbers of the Caribbean. Washington, DC: USDA, Forest Service, Northeastern Forest Experiment Station, 1962.
- Markwardt, L.J., and T.R.C. Wilson. Strength and related properties of woods grown in the United States: Technical Bulletin 479. Washington, DC: USDA, Forest Service, US Government Printing Office, 1935.
- **Miller, Regis B.** "Wood Anatomy and Identification of Species of Juglans." *Botanical Gazette* 137, no. 4 (1976). 368–377.
- Miller, Regis B., J. Thomas Quirk, and Donna J. Christensen. "Identifying White Oak Logs with Sodium Nitrite." Forest Products Journal 35, no. 2 (1985): 33–38.
- Miller, Regis B., and Michael C. Wiemann. Separation of Dalbergia nigra from Dalbergia spruceana. Madison: USDA, Forest Service, Forest Products Laboratory, 2006.
- **Mishiro, Akiyoshi.** "Bending Properties of Wood at —196°C." *Bulletin of the Tokyo University Forests*, no. 86 (1991): 179–189.
- **Missouri Botanical Garden.** *Tropicos.* Accessed April 22, 2015. http://www.tropicos.org/.
- **Mitchell, John, and Arthur Rook.** Botanical Dermatology: Plants and Plant Products Injurious to the Skin. Vancouver: Greengrass, 1979.
- Moreira, Walmir da Silva. "Relações entre propriedades físico-mecânicas e características anatômicas e químicas da madeira [Relationship between physical and mechanical properties and anatomical and chemical characteristics of wood]." PhD diss., Universidade Federal de Viçosa, 1999.
- **Morse, Andrea C., and Robert A. Blanchette.** "Etiology of red stain in boxelder." *Plant Health Progress* 10 (2002): 37-45.
- Mouridi, M. El, T. Laurent, A. Famiri, B. Kabouchi, T. Alméras, G. Calchéra, A. El Abid, M. Ziani, J. Gril, and A. Hakam. "Physical Characterization of the Root of Burl Wood Thuja (Tetraclinis articulata (Vahl) Masters)." Physical Chemical News 59 (2011): 57–64.

- **Nicholson, Paul T., and Ian Shaw.** *Ancient Egyptian Materials and Technology.* New York: Cambridge University Press, 2009.
- Niemiec, Stanley S., Glenn R. Ahrens, Susan Willits, and David E. Hibbs. Hardwoods of the Pacific Northwest. Corvallis: Forestry Publications Office, Oregon State University, Forest Research Laboratory, 1995.
- Oduor, Nellie, and Joseph Githiomi. Wood Characteristics and Properties of Cocos nucifera (the Coconut Tree) Grown in Kwale District. Nairobi: Kenya Forestry Research Institute, Forest Products Research Centre, 2010.
- Okino, E.Y.A., M.A.E. Santana, M.V.S. Alves, J.E. Melo, V.T.R. Coradin, M.R. Souza, D.E. Teixeira, and M.E. de Sousa. "Technological Characterization of Cupressus spp. Wood." *Floresta e Ambiente* 17, no. 1 (2010): 1–11.
- **Panayotov, Panayot, Kuncho Kalmukov, and Momchil Panayotov.** "Biological and Wood Properties of
 Ailanthus altissima (Mill.) Swingle." *Forestry Ideas* 17,
 no. 2 (2011): 122–130.
- **Panshin, A. J.** "Strength Properties of Chinese Elm." *Journal of Forestry* 40, no. 7 (1942): 564–565.
- **Panshin, A. J., and Carl Zeeuw.** *Textbook of Wood Technology.* New York: McGraw-Hill, 1980.
- **Plant Resources of Tropical Africa.** *PROTA4U.* Accessed April 22, 2015. http://www.prota4u.org/.
- **Pliny (the Elder).** *Natural History, Vol. III.* Translated by John Bostock and H.T. Riley. London: George Bell and Sons, 1892.
- **Porter, Terry.** *Wood: Identification & Use.* Newtown: Taunton Press, 2012.
- **Quinn, C.J.** "Taxonomy of Dacrydium Sol. Ex Lamb. Emend. De Laub. (Podocarpaceae)." *Australian Journal of Botany* 30, no. 3 (1982): 311–320.
- **Richter, H.G., and M.J. Dallwitz.** *Commercial Timbers: Descriptions, Illustrations, Identification, and Information Retrieval.* June 25, 2009. Accessed April 22, 2015.
 http://delta-intkey.com.
- **Rogers, Charles Gilbert.** A Manual of Forest Engineering for India. Calcutta: Office of the Superintendent of Government Printing, 1900.
- **Salem, Mohamed Z.M., and Nashwa H. Mohamed.**"Physico-Chemical Characterization of Wood from Maclura Pomifera (Raf.) C.K. Schneid. Adapted to the Egyptian Environmental Conditions." *Journal of Forest Products & Industries* 2, no. 2 (2013): 53–57.
- **Sargent, C.S.** *The Woods of the United States.* New York: D. Appleton and Company, 1885.
- **Sibul, I., K.L. Habicht, and A. Ploomi.** "Curly Birch Stands and Cultivation Results in Estonia." *Structural and functional deviations from normal growth and development of plants* (2011): 310–313.
- **Skolmen, Roger G.** Robusta Eucalyptus wood: its properties and uses. Berkeley: USDA, Forest Service, Pacific Southwest Forest and Range Experiment Station, 1963.

- **Skolmen, Roger G.** Some Woods of Hawaii: Properties and Uses of 16 Commercial species. Berkeley: USDA, Forest Service, Pacific Southwest Forest and Range Experiment Station, 1974.
- **Smith, Gideon F., and Estrela Figueiredo.** "Conserving Acacia Mill. with a Conserved Type: What Happened in Melbourne?" *Taxon* 60, no. 5 (2011): 1504–1506.
- **Snow, Charles H.** Wood and Other Organic Structural Materials. New York: McGraw-Hill, 1917.
- Sotomayor-Castellanos, Javier Ramón, and Saúl Antonio Hernández-Maldonado. "Características Elásticas de Maderas Mexicanas [Elastic Characteristics of Mexican Woods]." Investigación e Ingeniería de la Madera 8, no. 2 (2012).
- **Sotomayor-Castellanos, Javier Ramón, and Mariana Ramírez-Pérez.** "Densidad y Características
 Higroscópicas de Maderas Mexicanas [Density and
 Hygroscopic Characteristics of Mexican Woods]." *Investigación e Ingeniería de la Madera* 9, no. 3 (2013).
- **Standish, Dominic.** "Barriers to Barriers: Why Environmental Precaution has Delayed Mobile Floodgates to Protect Venice." In *Adapt or Die*, edited by Kendra Okonski, 39-55. London: Profile Books, 2003.
- **Suzán, Humberto, Duncan T. Patten, and Gary P. Nabhan.** "Exploitation and conservation of ironwood (Olneya tesota) in the Sonoran Desert." *Ecological Applications* 7, no. 3 (1997): 948-957.
- **United States Department of Agriculture.** Yearbook of Agriculture. Washington, DC: Government Printing Office, 1889.
- **Wheeler, E.A.** *InsideWood.* 2004 onwards. Accessed April 22, 2015. http://insidewood.lib.ncsu.edu/search.
- **Wheeler, E.A., P. Bass, and P.E. Gasoon.** "IAWA List of Microscopic Features for Hardwood Identification." *IAWA Bulletin* 10, no. 3 (1989): 219–332.
- **Wiedenhoeft, Alex C.** "The Limits of Scientific Wood Identification." *Professional Appraisers Information Exchange* 4, no. 2 (2006): 16.
- **Wiemann, Michael C., and David W. Green.** Estimating Janka hardness from specific gravity for tropical and temperate species. Madison: USDA, Forest Service, Forest Products Laboratory, 2007.
- **Wiemann, Michael C., and Flavio Ruffinatto.** Separation of Dalbergia stevensonii from Dalbergia tucurensis.

 Madison: USDA, Forest Service, Forest Products
 Laboratory, 2012.
- **Wiepking, C.A., and D.V. Doyle.** Strength and Related Properties of Balsa and Quipo Woods. Madison: USDA, Forest Service, Forest Products Laboratory, 1955.
- Williams, R. Sam, Regis Miller, and John Gangstad. Characteristics of Ten Tropical Hardwoods from Bolivia. Madison: USDA, Forest Service, Forest Products Laboratory, 2000.

Acknowledgements

STEVE EARIS: A professional woodturner from the United Kingdom, Steve has access to a lot of different wood species that are not seen nearly as frequently across the pond. As can be seen from the list below, he has donated quite a few samples and photos of finished turnings. The author is truly indebted to Steve's generosity! More of his work can be found at www.steveswoodenwonders.co.uk, as well as his site of turned skittle pins and balls: www.steveswoodenskittles.co.uk.

Donations:

Amboyna 🚹 Oak, Bog 🚹 Ash, Olive Oak, Brown 🚹 🔘 Balsa 🚹 Oak, English 🔐 🔘 Birch, Masur 😭 🔘 Oak, Holm 🌇 Obeche 🚹 Blackwood, African Blackwood, Australian 👚 Okoume 👚 Bosse Olive 😭 🔘 Boxwood 😭 🔘 Osage Orange 🔘 Bubinga 🔘 Padauk, African Padauk, Andaman 👚 Bulletwood 😭 🔘 Cebil 👫 🔘 Pau Rosa 🔘 Cedar of Lebanon 🐿 🕥 Pear 🔘 Cherry, Sweet Peroba Rosa 👚 Chestnut, Horse 🖀 🕥 Yellow Poplar 🔘 Cocobolo 🔘 Primavera 👚 Ebony, Gaboon 🔘 Purpleheart 🔘 Ekki 🏠 Rosewood, Amazon 👚 Elm, English 🔘 Rosewood, East Indian 👚 Goncalo Alves Rosewood, Honduran 🐿 🔘 Holly, English 🗅 Rosewood, Madagascar 👚 🕥 Satinwood, East Indian 🖴 Hornbeam, European 🖸 Sheoak 😭 🔘 Imbuia 🔘 Idigbo 🔘 Silky Oak, Northern Iroko 😭 🔘 Spruce, Sitka Jarrah 🚹 🔘 Tambootie 🚹 Kingwood 🐿 Tulipwood Laburnum 🚹 🔘 Verawood 🔘 Leadwood 👚 Walnut, African 🏠 Lemonwood 👚 Walnut, Black (crotch) Lime, European Walnut, English 备 🕥 Madrone (burl) Wenge 🔘 Mahogany, African 🔘 Willow, Black (face grain) Mansonia 🚹 Yellowheart 🔘 Yew 🔘 Maple, Quilted 👚 Ziricote 🔘 Mulberry Myrtle, Tasmanian

KEN FORDEN: Located in Whitethorn, California, Ken has a small hardwood mill that specializes in native Californian woods. His website features slabs, flooring, molding, and lumber: www.californiahardwoods.net.

Donations:

Myrtle Walnut, Claro W

JUSTIN HOLDEN: From old standbys to hard-to-find rarities, Justin has donated a number of nice samples from around the world. He sells single pieces upwards to entire pallets worth of exotic and tropical species through his eBay store: http://stores.ebay.com/exoticwoodsoftheworld.

Donations:

Afrormosia 🏠	Machiche 🊹
Afzelia 🏠	Makore
Avodire **	Mansonia (endgrain) 🚹
Canarywood 🎧	Wamara 🏠

MIKE LEIGHER: Located in South Carolina, Mike and his brother Brad have a portable sawmill and process a number of turning blanks. Mike has donated a number of samples from domestic, ornamental, and/or naturalized trees. His website features great deals on hard-to-find domestic turning blanks: www.turningblanks.net.

Donations:

Camphor 🏠	Mulberry 🏠
Chinaberry 🏠	Paulownia 🌇
Dogwood 🏠	Poplar, Rainbow 🚹
Locust, Honey 🌇	Sassafras 🏠
Magnolia, Southern 🖀	Sumac 🏠
Maple, Ambrosia	Sweetgum 🖀

DONATION KEY:

- wood or veneer sample donated
- finished wood object photo

Index

^	Amendoim 21, 208	Bamboo 38, 67
A	Anadenanthera colubrina 21, 61	Bambusa 67
Abies 25	Andiroba 80	Bark 2
alba 49	Angelim rajado 252	Basswood 10, 36, 242
amabilis 49	Angiosperms 1	Bayahonda Blanca 200
balsamea 27, 48	anatomy 29	Beech
concolor 49	Anigre 199	American 36, 41, 129
grandis 49	Aningeria (see Pouteria)	Blue 81
lasiocarpa 49	Anisotropic 9	European 129
magnifica 49	Annual rings 2	Myrtle 173
procera 49	Apitong 117	Beli Ś, 149
Abura 170	Apple 162	Berchemia zeyheri 21, 68
Acacia	Apricot 201	Betula 22
cambagei 21	Apuleia leiocarpa 61	alleghaniensis 69
erioloba (see Vachellia)	Araucaria	alnoides 70
koa 21, 33, 50	angustifolia 62	lenta 70
	araucana 62	neoalaskana 70
mangium 21, 51 melanoxylon 21	cunninghamii 62	papyrifera 70
•	_	
omalophylla 51	<i>heterophylla</i> 62 Arborvitae	pendula 70
Acapu 250		pendula var carelica 70
Acer 18	Eastern 239	populifolia 70
macrophyllum 22, 54	Giant 240	pubescens 70
negundo 22, 52	Arbutus menziesii 63	Birch 22
nigrum 22, 54	Arctostaphylos pungens 64	Alaska Paper 70
pseudoplatanus 54	Ash	Alder-Leaf 70
rubrum 22, 54	Black 131	Baltic 69
saccharinum 54	Blue 132	Downy 70
saccharum 11, 19, 22, 35, 43, 53	emerald ash borer 130	Gray 70
Æsculus 37, 56	European 30, 132	Karelian 70
flava 56	Green 2, 132	lookalikes 70
glabra 56	guide to 132	Masur 69, 70
hippocastanum 57	Mountain 126	Paper 70
Afara 237	Olive 132	River 70
Afrormosia 182	Oregon 132	Silver 70
Afzelia 21, 30, 57	Pumpkin 132	Sweet 70
xylocarpa 57	Swamp 131	Yellow 69
Agathis australis 1, 58	Tamo 224	Biseriate 28, 35
Ailanthus 58	White 130	Blackwood
Ailanthus altissima 58	Aspen	African 105
Albizia 21, 59	Bigtooth 198	Australian 21, 51
ferruginea 59	European 198	Burmese 107 , 196
julibrissin 59	Quaking 18, 198	Malaysian 114
lebbeck 59	Aspidosperma polyneuron 21, 64	Bloodwood 3, 21, 74
saman (see Samanea)	Astronium graveolens 21, 65	Board-foot 45
Alder	Atherosperma moschatum 222	Bobgunnia fistuloides 71
European 60	Availability 45	Bocote 97
Red 36, 60	Avodire 2, 21, 245	Bois d'arc 160
Algarrobo Blanco 200	Ayan 119	Bois de Rose 104
C	· ·	Bookmatch 17
Allergies 45	Azobe 157	
Allocasuarina 36, 59	В	Borassus flabellifer 72
Alnus	-	Bosse 136
glutinosa 60	Baikiæa plurijuga 66	Bound water 7
rubra 36, 60	Balau 226	Boxelder 22, 52
Amaranth 181	Baldcypress 27, 234	Boxwood 76
Amazique 137	Balsa 1, 174	Castelo 80
Amboyna 205	Balsamo 172	Box, Yellow 127

Brazilwood 77	Cedar (continued)	Cryptomeria japonica 21, 98
Briar 124	Incense 79	Cucumbertree 161
Brosimum	Japanese 98	Cumaru 21, 118
guianense 73	Lebanon 1, 26, 88	Cupressus
rubescens 3, 21, 74	Northern White 27, 239	nootkatensis 99
Brownheart 250	Pecky 79	× leylandii 100
Bubinga 21, 138	Port Orford 91	Curupay 61
Buckeye 56	Spanish 87	Cybistax donnell-smithii
Buckthorn 21, 217	Western Red 240	(see Roseodendron)
Bulletwood 164 Bulnesia	Yellow 99 Cedrela	Cypress Australian 79
arborea 75	odorata 87	Bald 234
sarmientoi 75	toona (see Toona ciliata)	Leyland 100
Butternut 4, 30, 145	Cedrus libani 1, 26, 88	Pecky 234
Buxus sempervirens 76	Celtis	1 CCRy 254
Dakus sempervirens 10	lævigata 89	D
C	occidentalis 36, 89	Dacrydium 100
Cabbagebark, Black 157	Centrolobium 21, 90	Dalbergia 20, 37, 43
Cæsalpinia	Chakte Kok 227	baronii 104
echinata 77 , 78	Chakte Viga 78	cearensis 40, 101
paraguariensis 78	Chamæcyparis	cochinchinensis 102
platyloba 78	lawsoniana 91	congestiflora 101
Callitris columellaris 79	nootkatensis (see Cupressus)	cultrata 107
Calocedrus decurrens 79	thyoides 91	decipularis 3, 102
Calycophyllum	Chechen 21, 95, 166 , 167	guide to 111
candidissimum 80	Cherry	latifolia 19, 32 , 103
multiflorum 80	Black 202	maritima 104
Camatillo 101	Brazilian 142	melanoxylon 105
Cambium 2	Patagonian 136	nigra 19, 32, 106
Camelthorn 21, 250	Sweet 202	oliveri 107
Camphor 93	Chestnut	retusa 16, 108
Canarywood 21, 90	American 85	sissoo 109
Carapa 80	Chinese 85	spruceana 3, 109
Cardwellia sublimis 81	Sweet 85	stevensonii 33, 110
Carpinus 36	wormy 85	tucurensis 111
betulus 81	Chinaberry 165	Deciduous 1
caroliniana 81	Chlorocardium rodiei 21, 92	Degame 80
Carya	Chlorophora	Deglupta 127
aquatica 84	excelsa (see Milicia)	Dendritic
cordiformis 35, 84 glabra 84	tinctoria (see Maclura) Chloroxylon swietenia 21, 93	growth form 1
illinoinensis 82	Cinnamomum camphora 93	pore arrangement 31 Dendrocalamus asper 38, 67
laciniosa 84	CITES appendices 46	Diffuse-porous 30
myristiciformis 84	Citron-wood 238	Diospyros 3, 43
ovata 83	Cocobolo 16, 108 , 229	celebica 112
tomentosa 84	Cocos nucifera 37, 94	crassiflora 18, 113
Cassia siamea (see Senna)	Coffeetree 21, 31, 139	ebenum 114
Castanea	Colophospermum mopane 21, 95	malabarica 115
dentata 85	Combretum	mun 115
mollissima 85	imberbe 95	virginiana 37, 116
sativa 85	schumannii 95	Dipterocarpus 117
Casuarina 36, 59	Conifers 1	Dipteryx odorata 21, 118
cunninghamiana 59	anatomy 25	Distemonanthus benthamianus 119
Catalpa	Coolibah 127	Distribution 40
bignonioides 86	cooperage 32	Dogwood 22, 98
speciosa 86	Cordia 97	Douglas-fir 25, 63, 203
Catalpa 86	dodecandra 96	Douka 241
Cebil 21, 61	Cornus florida 22, 98	Doussie 57
Cedar 25	Cosmocalyx spectabilis 227	Durability 43
Alaskan 99	Cottonwood	Dyera costulata 120
Aromatic Red 150	Black 198	E
Atlantic White 91	Eastern 8, 197	
Australian Red 243	Crushing strongth 41	Earlywood 2 to latewood transition 26
Eastern Red 19, 28, 150	Crushing strength 41	to latewood transition 20

Ebenopsis ebano 21, 120	Fagus	Grain (continued)
Ebony 3, 43, 105	grandifolia 36, 41, 129	plainsawn 4
African 113	sylvatica 129	quartersawn 5
Black and White 115	Family (taxonomy) 39	quilted 55
Brown 78	Fiber saturation point 7	reading 5
Ceylon 114	Fibrovascular bundles 37, 38	ribbon stripe 42
Gaboon 18, 113 , 116	Finishes	riftsawn 5
Macassar 112	evaporative 14	spalted 55
Mexican 229	moisture exclusion 11, 13	spider-webbing 96, 104, 106
Mun 115	reactive 13	spiral 42
Texas 21, 120	Fir 25	straight 42
White 116	Balsam 27, 48	tiger 18
Ekki 157	California Red 49	wavy 42
Elæagnus angustifolia 21, 121	Douglas 63, 203	
		Greenheart 21, 92 Green (moisture) 7
Elasticity 41, 255 Elm 31	European Silver 49 Grand 49	Grevillea robusta 134
American 246	Noble 49	
Cedar 248	Pacific Silver 49	Growth rings 2
		Guaiacum 18, 135
Dutch elm disease 248	Subalpine 49	Guanacaste 21, 123
English 248	White 49	Guarea cedrata 136
guide to 248	Flatsawn 4	Guibourtia 21, 138
hard 248	Fleroya (see Mitragyna)	ehie 35, 137
Red 31, 247	Fluorescence 20	hymenæifolia 136
Rock 248	species list 21	Guilandina echinata (see Cæsalpinia)
Siberian 248	water extract 111	Gum
Slippery 247	Foliage 1	Blue 124
soft 248	Fraxinus	Red 155
Winged 246	americana 130	River Red 127
Wych 21, 248	excelsior 30, 132	Rose 127
EMC 8	latifolia 132	Sap 155
Endgrain 3	nigra 131	Sweet 155
magnifying loupe 24	pennsylvanica 2, 132	Yellow 127
preparation 24	profunda 132	Gymnocladus dioicus 21, 139
Endiandra palmerstonii 121	quadrangulata 132	LI .
Entandrophragma	Free water 7	Н
cylindricum 37, 42, 122	FSP 7	Hackberry 36, 89
utile 123	Fustic 161	Hallea (see Mitragyna)
Enterolobium cyclocarpum 21, 123		Handroanthus 140
Equilibrium moisture content 8	G	Hardwoods 1
Erica arborea 124	Gabon 66	anatomy 29
Erythroxylum havanense 227	Garapa 61	parenchyma 33
Eucalyptus 30	Genus (taxonomy) 39	Heartwood 3
camaldulensis 127	Gidgee 21, 51	Hemlock 25
coolabah 127	Gleditsia	Eastern 244
deglupta 127	aquatica 133	Western 5, 245
diversicolor 127	triacanthos 9, 21, 133	Hevea brasiliensis 40, 141
globulus 124	Gluta 21, 23, 133	Hibiscus elatus (see Talipariti)
grandis 127	Golden Chain 153	Hickory
leucoxylon 127	Goncalo Alves 21, 65	Bitternut 35, 84
marginata 30, 125	Gonystylus 34, 134	Mockernut 84
melliodora 127	Grain	Nutmeg 84
obliqua 127	bastard 5	Pignut 84
oleosa 127	beeswing 42	Shagbark 83
regnans 126	cathedral 5	Shellbark 84
robusta 127	contrast 27	Water 84
urograndis 126	crotch 43	Holly 143
Euxylophora parænsis 21, 128	end 3	Hophornbeam 178
Evergreen 1	face 5	Hormigo 196
Excurrent growth form 1	fiddleback 18	Hornbeam 81
Extractives 3	flame 18	Horse Chestnut 57
leachability 23	flatsawn 4	Hygroscopic 7
_	interlocked 42	Hymenæa courbaril 21, 142
F	irregular 42	,,,
Face grain 5	mottle 42	

1	Larix (continued)	Manilkara
Idigbo 238	occidentalis 28, 154	bidentata 164
Ilex 143	Latewood 2	zapota 164
Imbuia 175	transition to 26	Mansonia 165
Intsia bijuga 21, 34, 144	Lauan 225	Mansonia altissima 165
Ipe 140	Laurel, California 249	Manzanita 64
Ipil 144	Leadwood 95	Maple 18
Iroko 29, 168	Lemonwood 80	ambrosia 55
Ironwood	Leopardwood 6, 35, 219	Bigleaf 22, 54
American 178	Letterwood 73	birdseye 55
Black 21, 152	Libocedrus decurrens (see Calocedrus)	Black 22, 54
Desert 21, 177	Lignum Vitae 18, 135	burl 55
Itin 200	Argentine 75	chemical testing 22
IUCN Red List 47	Lilac 231	curly 55 , 159, 227
•	Limba 42, 237	Hard 11, 19, 22, 35, 43, 53 , 217
J	Lime 242 Linden 242	identification 54, 70
Janka hardness 41, 253		quilted 55
Jarrah 30, 125	Liquidambar styraciflua 155	Red 22, 54
Jatoba 21, 31, 52, 142	Liriodendron tulipifera 156 , 161	Rock 53
Jelutong 31, 120	Locust	Silver 54
Jobillo 65	Black 20, 21, 32, 218	soft 35, 54
Juglans	Honey 9, 21, 133	spalted 55
cinerea 4, 30, 145	Water 133	Sugar 53
hindsii 19, 147	Lonchocarpus 21, 157	Sycamore 54
neotropica 19, 148	Lophira alata 157 Lophozonia 173	Marblewood 34, 252
nigra 3, 146	Lovoa trichilioides 158	Marmaroxylon racemosum (see Zygia) Massaranduba 164
regia 19, 147	Luster 43	MC 7
Julbernardia pellegriniana 5, 149	Lyptus 126	Melanorrhoea 21, 133
Juniper 25	Lysiloma latisiliquum 21, 158	Melia azedarach 165
Alligator 149	Lyshoma tatishiqaam 21, 130	Meranti
Juniperus 25	M	Dark Red 225
deppeana 149	Macacauba 107, 196	Light Red 226
virginiana 19, 28, 150	Macawood 196	White 226
Juvenile wood 4	Machærium 159	Yellow 226
V	Machiche 21, 157	Merbau 21, 34, 144
K	Maclura	Meristems, apical and lateral 2
Karri 127	pomifera 17, 160	Mesquite 21
Katalox 36, 71, 229	tinctoria 161	African 200
Kauri 1	Madrone 63	Black 80, 200
Kempas 152	Magnolia	Honey 199
Keruing 117	acuminata 161	Messmate 127
Kevazingo 138	grandiflora 161	Metopium brownei 21, 166
Khaya 151	virginiana 161	Microberlinia brazzavillensis 167
Kiaat 204	Magnolia, Southern 161	Milicia 29, 168
Kingwood 40, 101	Maĥoe, Blue 232	Millettia
Kiri 180	Mahogany	laurentii 169
Koa 21, 33, 50	African 151	stuhlmannii 21, 32, 170
Kokko 59	Asian 117	Mimosa 59
Koompassia malaccensis 152	Cuban 231	Mitragyna 170
Korina 237 Krugiodendron ferreum 21, 152	Genuine 230	MOE (Modulus of elasticity) 41, 255
Kwila 144	Honduran 37, 40, 230	Moisture content 7
Kwiid 144	Indian 243	Monkeypod 21, 50, 221
	Philippine 225	Monkey Puzzle 62
Laburnum 153	Santos 21, 172	Monocots 37
Laburnum anagyroides 153	Sipo 123	Mopane 21, 95
Lacewood 6, 179 , 219	Swamp 127	Morado 159
Lacewood 6, 179, 219 Lagarostrobos 100	White 219	MOR (Modulus of rupture) 41, 254
Lagerstroemia 153	Makore 241	Morus 20, 171
Larch 25	Mallee, Red 127	tinctoria (see Maclura)
Western 28, 154	Malus domestica 162	Movement in service 7
Larix 25	Mangifera indica 21, 50, 163	Movingui 119
larcina 154	Mangium 21, 51	Mozambique 137
- -	Mango 21, 50, 163	Mulberry 20, 171

Muninga 21, 204	Ovendry 7	Pine (continued)
Myroxylon balsamum 21, 172	_	Eastern White 18, 28, 190
Myrtle 21, 249	P	hard 186
Crepe 153	Padauk	Hoop 62
Tasmanian 173	African 21, 144, 195, 207 , 224	Huon 100
N1	Andaman 205	Jack 189
N	Burma 205	Jeffrey 189
Names	Paela 78	Khasi 193
common 39	Palaquium 178	Limber 191
scientific 39	Palm	Loblolly 187
Narra 21, 35, 206	Black 37, 72	Lodgepole 188
Nogal 148	Coconut 37, 94	Longleaf 187
Nothofagus cunninghamii 173	described 37	Maritime 193
Nyatoh 178	Red 37, 94 Palo Fierro 177	New Zealand Red 100 Norfolk Island 62
Nyssa 173	Panga Panga 21, 32, 170	Norway 192
0	Panopsis 6, 179 , 219	Ocote 193
Oak 6, 19, 22, 36	Parashorea 226	Parana 62
Black 213	Parenchyma	Patula 193
Bog 215	aliform 33	Pinyon 191
Brown 215	apotracheal 33	Pitch 187
Bur 211	banded 34	Pond 187
California Black 213	confluent 34	Ponderosa 5, 12, 26, 189
chemical testing 22	diffuse-in-aggregates 33	Radiata 189
Cherrybark 213	diffuse (in hardwoods) 33	Red 192
Chestnut 211	diffuse (in softwoods) 28	Sand 187
English 214	lozenge 34	Scots 193
Holm 6	marginal 34	Shortleaf 187
identification 209	paratracheal 33	Slash 185
Laurel 213	reticulate 34	soft 191
Live 216	scalariform 34	Southern Yellow 27, 186
Oregon White 211	scanty 33	Spruce 187
Overcup 211	unilateral 34	Sugar 27, 191
Pin 213 Post 211	vasicentric 33	Sumatran 193 Table Mountain 187
Red 17, 18, 43, 212	winged 34 zonate 28	Virginia 187
Scarlet 213	Parota 123	Western White 191
Sessile 211	Partridgewood 170, 173, 250	Western Yellow 189
Shumard 213	Pau Ferro 159	White Cypress 79
Southern Red 213	Paulownia 2, 180	Pink Ivory 21, 68
Swamp Chestnut 211	Paulownia tomentosa 2, 180	Pinus 25, 27
Swamp White 211	Payene 178	banksiana 189
Water 213	Pear 208	caribæa 187
White 6, 19, 32, 39, 210	Pecan 82	clausa 187
Willow 213	Peltogyne 21, 34, 39, 181	contorta 188
Obeche 243	Pepperwood 249	echinata 187
Ochroma pyramidale 1, 174	Pericopsis elata 182	edulis 191
Ocotea	Pernambuco 77	elliottii 185
porosa 175	Peroba Rosa 21, 64	flexilis 191
rodiei (see Chlorocardium) Odor 20	Persimmon 37, 116 Pheasantwood 223	glabra 187 jeffreyi 189
Okoume 66	Phoebe porosa (see Ocotea)	kesiya 193
Old growth 46	Picea 19, 25	lambertiana 27, 191
Olea 21, 176	abies 183	merkusii 193
Olive 21, 176	engelmannii 183	monticola 191
East Áfrican 176	glauca 183	nigra 193
Russian 21, 121	mariana 183	oocarpa 193
Olneya tesota 21, 177	rubens 183	palustris 187
Orange Agate 196	sitchensis 26, 48, 184	patula 193
Orientalwood 121	Pine 25	pinaster 193
Osage Orange 17, 111, 160	Austrian 193	ponderosa 5, 12, 26, 189
Argentine 161	Beetle Kill 188	pungens 187
Ostrya virginiana 178	Caribbean 187	radiata 189
Ovangkol 35, 137	Chilean 62	resinosa 192

Pinus (continued)	Prunus	Redgum 155
rigida 187	armeniaca 201	Redheart 21, 227
serotina 187	avium 202	Redwood 2, 28, 224
strobus 18, 28, 190	domestica 11, 201	Relative humidity 7
sylvestris 193	serotina 6, 202	Rengas 21, 133
•		
tæda 187	Pseudotsuga	Resin canals 25
virginiana 187	menziesii 63	fusiform rays 25
Piptadenia 21, 194	Pseudotsuga menziesii 25, 203	RH 7
Piratinera guianense (see Brosimum)	Pterocarpus	Rhamnus 21, 31, 217
Pistachio 21, 194	angolensis 21, 204	zeyheri (see Berchemia)
Pistacia vera 21, 194	dalbergioides 205	Rhus typhina 21, 217
Pith 3	indicus 21, 35, 42, 205, 206	Riftsawn 5
Pithecellobium saman (see Samanea)	macrocarpus 205	Rimu 100
Plainsawn 4	•	
	soyauxii 21, 207	Ring-porous 29
Plane, London 195	Pterogyne nitens 21, 208	Ripple marks 37
Plantation Hardwood 141	Purpleheart 21, 34, 39, 181	Robinia pseudoacacia 20, 21, 32, 218
Platanus	Pyinma 153	Roseodendron donnell-smithii 219
occidentalis 6, 195	Pyrus communis 208	Rosewood 20, 37
× acerifolia 195		Amazon 3, 109
Platymiscium 196	Q	Bolivian 159
Plum 11, 201	Quartersawn 4	Borneo 133
		_
Poisonwood, Black 166	advantages of 5	Brazilian 19, 32, 106
Poplar 156	Quebracho 21, 223	Burmese 107
Balsam 198	Quercus 6, 19, 22, 36	Caribbean 166
Rainbow 156	alba 6, 19, 32, 210	East Indian 19, 32, 103
Tulip 156	bicolor 211	guide to 111
White 198	coccinea 213	Guyana 228
Yellow 156 , 161	falcata 213	Honduran 33, 110
Populus	garryana 211	Khamphi 107
alba 198	ilex 6	Laos 107
balsamifera 198	kelloggii 213	Madagascar 104
deltoides 8, 197	laurifolia 16, 213	Panama 111
grandidentata 198	lyrata 211	Patagonian 61
tremula 198	macrocarpa 211	Santos 159
tremuloides 18 , 198	michauxii 211	Siamese 102
trichocarpa 198	nigra 213	Tiete 136
Pores	pagoda 213	Yucatan 111
arrangement 30	palustris 213	Rotary-slice 6, 17
chains 30	petræa 211	Rot resistance 43
	•	
clusters 30	phellos 213	Roupala montana 6, 35, 219
contents 32	prinus 211	Rubberwood 40, 141
dendritic 31	robur 214 , 215	S
diagonal/radial 30	rubra 17, 18, 43, 212	_
diffuse-porous 30	shumardii 213	Salix nigra 220
frequency 32	stellata 211	Samanea saman 21, 50, 221
radial multiples 30	velutina 213	Sapele 37, 42, 122
ring-porous 29	virginiana 216	Sapgum 155
semi-ring-porous 30	_	Sapodilla 164
size 31	R	
		Sapwood 3
solitary 30	Radial surface 4	demarcation 3
ulmiform 31	shrinkage 10	Sassafras 222
Pouteria 199	Raintree 221	Sassafras albidum 222
Pricing 45	Ramin 34, 134	Satine 74
Primavera 219	Rays 6	Satinwood
Princess Tree 180	aggregate 36	Asian 153
Prosopis 21	fleck 6	Brazilian 128
africana 200	fusiform 25	Ceylon 21, 93
		· · · · · · · · · · · · · · · · · · ·
alba 200	in hardwoods 35	Nigerian 119
glandulosa 199	in softwoods 28	West Indian 93
juliflora 200	noded 36	Schinopsis 21, 223
kuntzei 200	spacing 35	Semi-ring-porous 30
nigra 200	storied 36	Senna siamea 223
Provenance 15	width 35	Sensitizer 45
	Reagent 22	Sequoia sempervirens 2, 28, 224

Seraya, White 226	Tamarindus indica 233	V
Shedua 137	Tambootie 228	Vachellia erioloba 21, 250
Sheesham 109	Tanga Tanga 59	Vachenia erioloba 21, 250 Vavona 224
Shellac	Tangential surface 4	Verawood 75 , 229
moisture exclusion of 13	shrinkage 10	Vermillion 205
recipe 14	Taxodium distichum 1, 27, 234	Vertical grain 4
Sheoak 36, 59 , 119	Taxus 1, 25, 45, 235	Vessel elements 29
River 59	Teak 236	Vouacapoua americana 250
Shittim 250	Brazilian 118	
Shorea 225, 226	Burmese 236	W
Shrinkage	Rhodesian 66	Walnut
longitudinal 10 volumetric 10	Tectona grandis 236 Terminalia	African 158
Silky Oak	ivorensis 238	Black 3, 146
Northern 81	superba 42, 237	Brazilian 140, 175
Southern 134	Tetraclinis articulata 238	Caribbean 158
Simira salvadorensis 21, 227	Texture 43	Circassian 147
Sipo 123	Thuja	Claro 19, 89, 147
Sirari 136	occidentalis 27, 239	English 19, 147
Sissoo 109	plicata 240	French 147
Snakewood 73, 251	Thuya 238	Peruvian 19, 78, 148
Softwoods 1	Thyine 238	Queensland 121
anatomy 25	Tieghemella heckelii 241	Tropical 148
earlywood transition 26	Tigerwood 65	White 145
grain evenness 27	Tigre Caspi 251	Wamara 228
parenchyma 28	Tilia 36	Wattle, Black 51
texture 26	americana 10, 242	Weathering 43
Species (taxonomy) 39	× europæa 242	Weinmannia trichosperma 251
Specific gravity 40	Timborana 21, 194	Wenge 169 Willow 220
Spirostachys africana 228	Tineo 73, 251	Wood identification
Springwood 2	Toona ciliata 243	chemical testing 22
Spruce 19, 25	Toxicity 45	color 17
Black 183	Tracheids 26	grain 18
Engelmann 183	Transverse section 3	history 19
lookalikes 183	Tree of Heaven 58	limitations 15
Norway 183	Triplochiton scleroxylon 243	odor 20
Red 183 Sitka 26, 48, 184	T/R ratio 10 Tsuga 25	weight/hardness 18
White 183	canadensis 244	Workability 44
Sugarberry 89	heterophylla 5, 245	, v
Sugi 21, 98	mertensiana 245	Y
Sumac, Staghorn 21, 217	Tulipwood	Yarran 51
Summerwood 2	American 156	Yellowheart 21, 74, 128 , 142, 252
Sustainability 46	Brazilian 3, 102	Yew 1, 25, 45, 235
Swartzia 71	Tupelo 173	Z
benthamiana 228	Turræanthus africanus 2, 21, 245	
cubensis 36, 71, 229	Tyloses 32	Zanthoxylum flavum 93
fistuloides (see Bobgunnia)	Tzalam 21, 158	Zapote, Chico 164
madagascariensis (see Bobgunnia)	11	Zebrano 167
Sweetbay 161	U	Zebrawood 167
Sweetgum 155	Ulmus 31	Ziricote 96
Swietenia	alata 246	Zygia cataractæ 251
macrophylla 37, 40, 230	americana 246	racemosa 34, 252
mahogani 231	crassifolia 248	racemosa 34, 232
Sycamore 6, 36, 195	glabra 21, 248	
Synonym 40	procera 248	
Syringa vulgaris 231	pumila 248	
Т	rubra 31, 247	
Tabebuia (see Handroanthus)	thomasii 248	
donnell-smithii (see Roseodendron)	Umbellularia californica 21, 249 Uniseriate 28, 35	
Talipariti elatum 232	Uniseriate 28, 35 Utile 123	
Tamarack 154	Othe 120	

Tamarind 233